A local rigidity theorem for minimal surfaces in Minkowski 3-space of Randers type

被引:0
|
作者
Bing Ye Wu
机构
[1] Minjiang University,Department of Mathematics
来源
关键词
Minkowski space of Randers type; Mean curvature; BH-minimal; HT-minimal; 53C60; Secondary 53B40;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb{R}^3,\widetilde{F}_b)$$\end{document} be a Minkowski 3-space of Randers type with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{F}_b=\widetilde{\alpha}+\widetilde{\beta}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{\alpha}$$\end{document} is the Euclidean metric and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{\beta}=bdx^3,0 < b < 1$$\end{document}. We consider minimal surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb{R}^3,\widetilde{F}_b)$$\end{document} and prove that if a connected surface M in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^3$$\end{document} is minimal with respect to both the Busemann–Hausdorff volume form and the Holmes–Thompson volume form, then up to a parallel translation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^3$$\end{document}, M is either a piece of plane or a piece of helicoid which is generated by lines screwing about the x3-axis.
引用
收藏
页码:375 / 384
页数:9
相关论文
共 50 条