On the configuration LP for maximum budgeted allocation

被引:0
|
作者
Christos Kalaitzis
Aleksander Ma̧dry
Alantha Newman
Lukáš Poláček
Ola Svensson
机构
[1] EPFL,
[2] KTH Royal Institute of Technology,undefined
[3] MIT Cambridge,undefined
[4] CNRS-Université Grenoble,undefined
[5] Alpes and G-SCOP,undefined
来源
Mathematical Programming | 2015年 / 154卷
关键词
68W25;
D O I
暂无
中图分类号
学科分类号
摘要
We study the maximum budgeted allocation problem, i.e., the problem of selling a set of m indivisible goods to n players, each with a separate budget, such that we maximize the collected revenue. Since the natural assignment LP is known to have an integrality gap of 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{4}$$\end{document}, which matches the best known approximation algorithms, our main focus is to improve our understanding of the stronger configuration LP relaxation. In this direction, we prove that the integrality gap of the configuration LP is strictly better than 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{4}$$\end{document}, and provide corresponding polynomial time roundings, in the following restrictions of the problem: (i) the restricted budgeted allocation problem, in which all the players have the same budget and every item has the same value for any player it can be sold to, and (ii) the graph MBA problem, in which an item can be assigned to at most 2 players. Finally, we improve the best known upper bound on the integrality gap for the general case from 56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{6}$$\end{document} to 22-2≈0.828\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sqrt{2}-2\approx 0.828$$\end{document} and also prove hardness of approximation results for both cases.
引用
收藏
页码:427 / 462
页数:35
相关论文
共 50 条
  • [1] On the configuration LP for maximum budgeted allocation
    Kalaitzis, Christos
    Madry, Aleksander
    Newman, Alantha
    Polacek, Lukas
    Svensson, Ola
    MATHEMATICAL PROGRAMMING, 2015, 154 (1-2) : 427 - 462
  • [2] The budgeted maximum coverage problem
    Khuller, S
    Moss, A
    Naor, JS
    INFORMATION PROCESSING LETTERS, 1999, 70 (01) : 39 - 45
  • [3] Budgeted maximum graph coverage
    Krumke, SO
    Marathe, MV
    Poensgen, D
    Ravi, SS
    Wirth, HC
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2002, 2573 : 321 - 332
  • [4] Online Budgeted Maximum Coverage
    Rawitz, Dror
    Rosen, Adi
    ALGORITHMICA, 2021, 83 (09) : 2989 - 3014
  • [5] Online Budgeted Maximum Coverage
    Dror Rawitz
    Adi Rosén
    Algorithmica, 2021, 83 : 2989 - 3014
  • [6] The budgeted maximin share allocation problem
    Deng, Bin
    Li, Weidong
    OPTIMIZATION LETTERS, 2024,
  • [7] Online Budgeted Allocation with General Budgets
    Kell, Nathaniel
    Panigrahi, Debmalya
    EC'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2016, : 419 - 436
  • [8] AD DELIVERY WITH BUDGETED ADVERTISERS: A COMPREHENSIVE LP APPROACH
    Abrams, Zoe
    Keerthi, S. Sathiya
    Mendelevitch, Ofer
    Tomlin, John A.
    JOURNAL OF ELECTRONIC COMMERCE RESEARCH, 2008, 9 (01): : 16 - 32
  • [9] Iterated hyperplane search for the budgeted maximum coverage problem
    Wei, Zequn
    Hao, Jin-Kao
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [10] Approximations for Restrictions of The Budgeted and Generalized Maximum Coverage Problems
    Piva, Breno
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 667 - 676