Definable choice for a class of weakly o-minimal theories

被引:0
|
作者
Michael C. Laskowski
Christopher S. Shaw
机构
[1] University of Maryland,Department of Mathematics
[2] Columbia College Chicago,Department of Science and Mathematics
来源
关键词
Weakly o-minimal; Skolem functions; Definable choice; 03C64;
D O I
暂无
中图分类号
学科分类号
摘要
Given an o-minimal structure M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}$$\end{document} with a group operation, we show that for a properly convex subset U, the theory of the expanded structure M′=(M,U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'=({\mathcal M},U)$$\end{document} has definable Skolem functions precisely when M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'$$\end{document} is valuational. As a corollary, we get an elementary proof that the theory of any such M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'$$\end{document} does not satisfy definable choice.
引用
收藏
页码:735 / 748
页数:13
相关论文
共 50 条
  • [1] Definable choice for a class of weakly o-minimal theories
    Laskowski, Michael C.
    Shaw, Christopher S.
    ARCHIVE FOR MATHEMATICAL LOGIC, 2016, 55 (5-6) : 735 - 748
  • [2] On the Boolean algebras of definable sets in weakly o-minimal theories
    Leonesi, S
    Toffalori, C
    MATHEMATICAL LOGIC QUARTERLY, 2004, 50 (03) : 241 - 248
  • [3] Unstable structures definable in o-minimal theories
    Hasson, Assaf
    Onshuus, Alf
    SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (01): : 121 - 143
  • [4] Unstable structures definable in o-minimal theories
    Assaf Hasson
    Alf Onshuus
    Selecta Mathematica, 2010, 16 : 121 - 143
  • [5] Definable one dimensional structures in o-minimal theories
    Assaf Hasson
    Alf Onshuus
    Ya’acov Peterzil
    Israel Journal of Mathematics, 2010, 179 : 297 - 361
  • [6] SOLVABLE LIE GROUPS DEFINABLE IN O-MINIMAL THEORIES
    Conversano, Annalisa
    Onshuus, Alf
    Starchenko, Sergei
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2018, 17 (02) : 441 - 452
  • [7] DEFINABLE ONE DIMENSIONAL STRUCTURES IN O-MINIMAL THEORIES
    Hasson, Assaf
    Onshuus, Alf
    Peterzil, Ya'acov
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 179 (01) : 297 - 361
  • [8] ON DEFINABLE SKOLEM FUNCTIONS IN WEAKLY O-MINIMAL NONVALUATIONAL STRUCTURES
    Eleftheriou, Pantelis E.
    Hasson, Assaf
    Keren, Gil
    JOURNAL OF SYMBOLIC LOGIC, 2017, 82 (04) : 1482 - 1495
  • [9] TOPOLOGICAL PROPERTIES OF SETS DEFINABLE IN WEAKLY O-MINIMAL STRUCTURES
    Wencel, Roman
    JOURNAL OF SYMBOLIC LOGIC, 2010, 75 (03) : 841 - 867
  • [10] DEFINABLE STRUCTURES IN O-MINIMAL THEORIES: ONE DIMENSIONAL TYPES
    Hasson, Assaf
    Onshuus, Alf
    Peterzil, Ya'acov
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 179 (01) : 363 - 379