Given an o-minimal structure M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal M}$$\end{document} with a group operation, we show that for a properly convex subset U, the theory of the expanded structure M′=(M,U)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal M}'=({\mathcal M},U)$$\end{document} has definable Skolem functions precisely when M′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal M}'$$\end{document} is valuational. As a corollary, we get an elementary proof that the theory of any such M′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal M}'$$\end{document} does not satisfy definable choice.
机构:
Univ Los Andes, Dept Matemat, Cra 1 18A-10,Edificio H, Bogota 111711, ColombiaMassey Univ Albany, INMS, HMS Bldg,Private Bag 102904, North Shore City 0745, New Zealand
Onshuus, Alf
Starchenko, Sergei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USAMassey Univ Albany, INMS, HMS Bldg,Private Bag 102904, North Shore City 0745, New Zealand