Mesostructure optimization in multi-material additive manufacturing: a theoretical perspective

被引:0
|
作者
Hang Z. Yu
Samuel R. Cross
Christopher A. Schuh
机构
[1] Massachusetts Institute of Technology,Department of Materials Science and Engineering
[2] Virginia Tech,Department of Materials Science and Engineering
[3] Xtalic Corporation,undefined
来源
关键词
Topology Optimization; Safety Factor; Additive Manufacturing; Vickers Hardness Number; Mechanical Overload;
D O I
暂无
中图分类号
学科分类号
摘要
As multi-material additive manufacturing technologies mature, a new opportunity for materials science and engineering emerges between the scale of the microstructure and the scale of an engineering component. Here we explore the problem of “mesostructure optimization,” the computational identification of preferred point-to-point distributions of material structure and properties. We illustrate the opportunity with two simple example problems for 1D and 2D mesostructure optimization, respectively, namely (1) a functionally graded cylinder that is computationally optimized to redistribute the Hertzian contact stress fields and (2) a thin plate made of digital materials computationally designed to simultaneously maximize bending resistance and minimize total weight. The mechanical performance of materials in these two problems is significantly improved as compared to any monolithic-material counterpart, including a topology-optimized monolith in case (2). These results point to new opportunities for multi-objective performance enhancement in materials.
引用
收藏
页码:4288 / 4298
页数:10
相关论文
共 50 条
  • [1] Mesostructure optimization in multi-material additive manufacturing: a theoretical perspective
    Yu, Hang Z.
    Cross, Samuel R.
    Schuh, Christopher A.
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (08) : 4288 - 4298
  • [2] MULTI-MATERIAL TOPOLOGY OPTIMIZATION FOR ADDITIVE MANUFACTURING
    Mirzendehdel, Amir M.
    Suresh, Krishnan
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 1A, 2016,
  • [3] Multi-material Additive Manufacturing of Antennas
    Mirotznik, Mark S.
    Larimore, Zachary
    Pa, Peter
    Parsons, Paul
    Mills, Matt
    2016 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY (IWAT), 2016, : 123 - 126
  • [4] Additive manufacturing of multi-material structures
    Bandyopadhyay, Amit
    Heer, Bryan
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2018, 129 : 1 - 16
  • [5] Perspectives on multi-material additive manufacturing
    Xiaoyu Zheng
    Christopher Williams
    Christopher M. Spadaccini
    Kristina Shea
    Journal of Materials Research, 2021, 36 : 3549 - 3557
  • [6] REVIEW OF MULTI-MATERIAL ADDITIVE MANUFACTURING
    Tan, J. L.
    Wong, C. H.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 294 - 299
  • [7] Perspectives on multi-material additive manufacturing
    Zheng, Xiaoyu
    Williams, Christopher
    Spadaccini, Christopher M.
    Shea, Kristina
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (18) : 3549 - 3557
  • [8] Multi-material topology optimization for additive manufacturing considering dimensional constraints
    Feng, Yukun
    Noda, Masaki
    Noguchi, Yuki
    Matsushima, Kei
    Yamada, Takayuki
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 410
  • [9] Multi-material additive manufacturing of microwave devices
    Vial, Benjamin
    Giddens, Henry
    Hao, Yang
    2022 16TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2022,
  • [10] TOPOLOGY OPTIMIZATION FOR MULTI-MATERIAL LATTICE STRUCTURES WITH TAILORABLE MATERIAL PROPERTIES FOR ADDITIVE MANUFACTURING
    Venugopal, Vysakh
    McConaha, Matthew
    Anand, Sam
    PROCEEDINGS OF THE ASME 14TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2019, VOL 1, 2019,