Infinitely many bound state solutions of Choquard equations with potentials

被引:0
|
作者
Xiaonan Liu
Shiwang Ma
Xu Zhang
机构
[1] Nankai University,School of Mathematical Science and LPMC
[2] Central South University,School of Mathematics and Statistics
关键词
Choquard equation; Bound state; Infinitely many solutions; Primary: 35J20; Secondary: 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following Choquard equation -Δu+a(x)u=(Iα∗|u|p)|u|p-2u,x∈RN,u(x)→0,|x|→+∞,(CH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \Delta u+a(x)u=(I_\alpha *|u|^p)|u|^{p-2}u, &{}x\in {\mathbb {R}}^N,\\ u(x)\rightarrow 0,&{}|x|\rightarrow +\infty , \end{array}\right. {\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (\hbox {CH})} \end{aligned}$$\end{document}where N≥3,Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3, I_\alpha $$\end{document} is a Riesz potential, N+αN<p<N+αN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{N+\alpha }{N}<p<\frac{N+\alpha }{N-2}$$\end{document} and a(x) is a given nonnegative potential function. Under some assumptions of asymptotic properties on a(x) at infinity and according to a concentration compactness argument, we obtain infinitely many solutions of (CH), whose energy can be arbitrarily large.
引用
收藏
相关论文
共 50 条
  • [1] Infinitely many bound state solutions of Choquard equations with potentials
    Liu, Xiaonan
    Ma, Shiwang
    Zhang, Xu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [2] Infinitely many solutions for nonhomogeneous Choquard equations
    Wang, Tao
    Guo, Hui
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (24) : 1 - 10
  • [3] Infinitely many bound states for Choquard equations with local nonlinearities
    Li, Xinfu
    Liu, Xiaonan
    Ma, Shiwang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
  • [4] Ground state solutions and infinitely many solutions for a nonlinear Choquard equation
    Wang, Tianfang
    Zhang, Wen
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [5] Ground state solutions and infinitely many solutions for a nonlinear Choquard equation
    Tianfang Wang
    Wen Zhang
    Boundary Value Problems, 2021
  • [6] Infinitely many non-radial positive solutions for Choquard equations
    Yu, Mingzhu
    Chen, Haibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [7] Infinitely many solutions for The Brezis-Nirenberg problem with nonlinear Choquard equations
    He, Rui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
  • [8] Bound state solutions of Choquard equations with a nonlocal operator
    Guo, Lun
    Li, Qi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) : 3548 - 3567
  • [9] Infinitely many solutions for a class of biharmonic equations with indefinite potentials
    Guan, Wen
    Wang, Da-Bin
    Hao, Xinan
    AIMS MATHEMATICS, 2020, 5 (04): : 3634 - 3645
  • [10] Infinitely many solutions for nonlinear elliptic equations with oscillatory potentials
    Jin, Ke
    Li, Yimei
    Wang, Lushun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 409 : 592 - 634