Ground states in non-relativistic quantum electrodynamics

被引:0
|
作者
Marcel Griesemer
Elliott H. Lieb
Michael Loss
机构
[1] Department of Mathematics,
[2] University of Alabama at Birmingham,undefined
[3] Birmingham,undefined
[4] AL 35294,undefined
[5] USA (e-mail: marcel@math.uab.edu),undefined
[6] Departments of Physics and Mathematics,undefined
[7] Jadwin Hall,undefined
[8] Princeton University,undefined
[9] P. O. Box 708,undefined
[10] Princeton,undefined
[11] NJ 08544,undefined
[12] USA (e-mail: lieb@princeton.edu),undefined
[13] School of Mathematics,undefined
[14] Georgia Tech,undefined
[15] Atlanta,undefined
[16] GA 30332,undefined
[17] USA (e-mail: loss@math.gatech.edu),undefined
来源
Inventiones mathematicae | 2001年 / 145卷
关键词
Photon Number; External Potential; Number Operator; Weak Derivative; Asymptotic Completeness;
D O I
暂无
中图分类号
学科分类号
摘要
The excited states of a charged particle interacting with the quantized electromagnetic field and an external potential all decay, but such a particle should have a true ground state – one that minimizes the energy and satisfies the Schrödinger equation. We prove quite generally that this state exists for all values of the fine-structure constant and the ultraviolet cutoff. We also show the same thing for a many-particle system under physically natural conditions.
引用
收藏
页码:557 / 595
页数:38
相关论文
共 50 条