Internal languages of finitely complete (∞,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\infty , 1)$$\end{document}-categories

被引:0
|
作者
Krzysztof Kapulkin
Karol Szumiło
机构
关键词
18G55; 55U35; 03B15 (primary);
D O I
10.1007/s00029-019-0480-0
中图分类号
学科分类号
摘要
We prove that the homotopy theory of Joyal’s tribes is equivalent to that of fibration categories. As a consequence, we deduce a variant of the conjecture asserting that Martin-Löf Type Theory with dependent sums and intensional identity types is the internal language of (∞,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\infty , 1)$$\end{document}-categories with finite limits.
引用
收藏
相关论文
共 50 条