Diagonal bi-act over semigroup;
Epigroup;
Locally finite semigroup;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We present necessary conditions for the diagonal bi-act S(S×S)S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_S(S\times S)_S$$\end{document} over an epigroup S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S$$\end{document} to be finitely generated. They imply that this bi-act is not finitely generated whenever S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S$$\end{document} is infinite and locally finite. This solves a problem posed by Gallagher.
机构:
National Research University of Electronic Technology, Moscow
Lomonosov Moscow State University, Moscow
Moscow Center for Fundamental and Applied Mathematics, MoscowNational Research University of Electronic Technology, Moscow
Kozhukhov I.B.
Mikhalev A.V.
论文数: 0引用数: 0
h-index: 0
机构:
Lomonosov Moscow State University, Moscow
Moscow Center for Fundamental and Applied Mathematics, MoscowNational Research University of Electronic Technology, Moscow