Eigenvalue Fluctuations for Random Elliptic Operators in Homogenization Regime

被引:0
|
作者
Mitia Duerinckx
机构
[1] Université Libre de Bruxelles,Département de Mathématique
[2] Université Paris-Saclay,undefined
[3] CNRS,undefined
[4] Laboratoire de Mathématiques d’Orsay,undefined
来源
关键词
Eigenvalue fluctuations; Homogenization theory; Linear elliptic operator; Quantitative central lilmit theorem;
D O I
暂无
中图分类号
学科分类号
摘要
This work is devoted to the asymptotic behavior of eigenvalues of an elliptic operator with rapidly oscillating random coefficients on a bounded domain with Dirichlet boundary conditions. A sharp convergence rate is obtained for eigenvalues towards those of the homogenized problem, as well as a quantitative two-scale expansion result for eigenfunctions. Next, a quantitative central limit theorem is established for fluctuations of isolated eigenvalues; more precisely, a pathwise characterization of eigenvalue fluctuations is obtained in terms of the so-called homogenization commutator, in parallel with the recent fluctuation theory for the solution operator.
引用
收藏
相关论文
共 50 条
  • [1] Eigenvalue Fluctuations for Random Elliptic Operators in Homogenization Regime
    Duerinckx, Mitia
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (03)
  • [2] Periodic Homogenization of the Principal Eigenvalue of Second-Order Elliptic Operators
    Gonzalo Dávila
    Andrei Rodríguez-Paredes
    Erwin Topp
    Applied Mathematics & Optimization, 2023, 88
  • [3] Periodic Homogenization of the Principal Eigenvalue of Second-Order Elliptic Operators
    Davila, Gonzalo
    Rodriguez-Paredes, Andrei
    Topp, Erwin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01):
  • [4] Eigenvalue fluctuations of 1-dimensional random Schrodinger operators
    Mashiko, Takuto
    Marui, Yuma
    Maruyama, Naoki
    Nakano, Fumihiko
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (08)
  • [5] Regularity of random elliptic operators with degenerate coefficients and applications to stochastic homogenization
    Bella, Peter
    Kniely, Michael
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (04): : 2246 - 2288
  • [6] Learning Homogenization for Elliptic Operators
    Bhattacharya, Kaushik
    Kovachki, Nikola B.
    Rajan, Aakila
    Stuart, Andrew M.
    Trautner, Margaret
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 1844 - 1873
  • [7] Reiterated homogenization for elliptic operators
    Meunier, N
    Van Schaftingen, J
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (03) : 209 - 214
  • [8] Homogenization of elliptic difference operators
    Piatnitski, A
    Remy, E
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) : 53 - 83
  • [9] HOMOGENIZATION OF ELLIPTIC EIGENVALUE PROBLEMS .1.
    KESAVAN, S
    APPLIED MATHEMATICS AND OPTIMIZATION, 1979, 5 (02): : 153 - 167
  • [10] Homogenization for locally periodic elliptic operators
    Senik, Nikita N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)