Mild hydrothermal synthesis of γ-MnO2 nanostructures and their phase transformation to α-MnO2 nanowires

被引:0
|
作者
Yaqoob Khan
Shahid Khan Durrani
Mazhar Mehmood
Muhammad Riaz Khan
机构
[1] Pakistan Institute of Engineering and Applied Sciences,National Centre for Nanotechnology, Department of Chemical and Materials Engineering
[2] Pakistan Institute of Nuclear Science and Technology,Materials Division
[3] University of Peshawar,Centralized Resource Laboratory
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Urchin-like γ-MnO2 nanostructures, composed of nanowires with diameters in the range 40–70 nm were prepared through the direct reaction between MnSO4 and KClO3 via a mild hydrothermal route. Reaction time and temperature were found to influence both the phase and morphology of as-prepared products. For longer reaction times, the initially formed γ-phase transformed to α-MnO2 nanowires along with the loss of urchin-like morphology. Powder x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetry and differential scanning calorimetry were used to characterize the as-prepared products. On the basis of XRD patterns and SEM images, a possible growth mechanism for the time-dependant morphological evolution of various MnO2 nanostructures has been suggested and discussed.
引用
收藏
页码:2268 / 2275
页数:7
相关论文
共 50 条
  • [1] Mild hydrothermal synthesis of γ-MnO2 nanostructures and their phase transformation to α-MnO2 nanowires
    Khan, Yaqoob
    Durrani, Shahid Khan
    Mehmood, Mazhar
    Khan, Muhammad Riaz
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (17) : 2268 - 2275
  • [2] Controllable Synthesis of α-MnO2 Nanostructures and Phase Transformation to β-MnO2 Microcrystals by Hydrothermal Crystallization
    Zhang, Xiong
    Yu, Peng
    Wang, Dongliang
    Ma, Yanwei
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (02) : 898 - 904
  • [3] Synthesis and characterization of α-MnO2 nanowires:: Self-assembly and phase transformation to β-MnO2 microcrystals
    Zhang, Xiong
    Yang, Wensheng
    Yang, Junjiao
    Evans, David G.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (03) : 716 - 722
  • [4] Hydrothermal synthesis and characterisation of MnO2 nanostructures
    Hashemzadeh F.
    Kashani-Motlagh M.
    International Journal of Nanomanufacturing, 2010, 5 (3-4) : 260 - 267
  • [5] Facile hydrothermal synthesis of α-MnO2 and δ-MnO2 for pseudocapacitor applications
    Ekaterina A. Arkhipova
    Anton S. Ivanov
    Konstantin I. Maslakov
    Roman Yu. Novotortsev
    Serguei V. Savilov
    Hui Xia
    Andrey V. Desyatov
    Sergey M. Aldoshin
    Ionics, 2022, 28 : 3501 - 3509
  • [6] Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures
    Subramanian, V
    Zhu, HW
    Vajtai, R
    Ajayan, PM
    Wei, BQ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (43): : 20207 - 20214
  • [7] Hydrothermal synthesis and magnetic properties of α-MnO2 nanowires
    Zhao, J. G.
    Yin, J. Z.
    Yang, S. G.
    MATERIALS RESEARCH BULLETIN, 2012, 47 (03) : 896 - 900
  • [8] Hydrothermal synthesis and electrochemical properties of MnO2 nanostructures
    Wang, Ning
    Pang, Hongtao
    Peng, Hongrui
    Li, Guicun
    Chen, Xiguang
    CRYSTAL RESEARCH AND TECHNOLOGY, 2009, 44 (11) : 1230 - 1234
  • [9] Facile hydrothermal synthesis of α-MnO2 and δ-MnO2 for pseudocapacitor applications
    Arkhipova, Ekaterina A.
    Ivanov, Anton S.
    Maslakov, Konstantin, I
    Novotortsev, Roman Yu
    Savilov, Serguei, V
    Xia, Hui
    Desyatov, Andrey, V
    Aldoshin, Sergey M.
    IONICS, 2022, 28 (07) : 3501 - 3509
  • [10] Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics
    Hong, Seok Bok
    Kang, On Yu
    Hwang, Sung Yeon
    Heo, Young Min
    Kim, Jung Won
    Choi, Bong Gill
    APPLIED CHEMISTRY FOR ENGINEERING, 2016, 27 (06): : 653 - 658