Electrostatic wave interaction via asymmetric vector solitons as precursor to rogue wave formation in non-Maxwellian plasmas

被引:0
|
作者
N. Lazarides
Giorgos P. Veldes
D. J. Frantzeskakis
Ioannis Kourakis
机构
[1] Khalifa University of Science and Technology,Department of Mathematics
[2] University of Thessaly,Department of Physics
[3] National and Kapodistrian University of Athens,Department of Physics
[4] Khalifa University of Science and Technology,Space & Planetary Science Center
[5] Hellenic Space Center,undefined
来源
Scientific Reports | / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An asymmetric pair of coupled nonlinear Schrödinger (CNLS) equations has been derived through a multiscale perturbation method applied to a plasma fluid model, in which two wavepackets of distinct (carrier) wavenumbers (k1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_1$$\end{document} and k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_2$$\end{document}) and amplitudes (Ψ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _1$$\end{document} and Ψ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi _2$$\end{document}) are allowed to co-propagate and interact. The original fluid model was set up for a non-magnetized plasma consisting of cold inertial ions evolving against a κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}-distributed electron background in one dimension. The reduction procedure resulting in the CNLS equations has provided analytical expressions for the dispersion, self-modulation and cross-coupling coefficients in terms of the two carrier wavenumbers. These coefficients present no symmetry whatsoever, in the general case (of different wavenumbers). The possibility for coupled envelope (vector soliton) solutions to occur has been investigated. Although the CNLS equations are asymmetric and non-integrable, in principle, the system admits various types of vector soliton solutions, physically representing nonlinear, localized electrostatic plasma modes, whose areas of existence is calculated on the wavenumbers’ parameter plane. The possibility for either bright (B) or dark (D) type excitations for either of the (2) waves provides four (4) combinations for the envelope pair (BB, BD, DB, DD), if a set of explicit criteria is satisfied. Moreover, the soliton parameters (maximum amplitude, width) are also calculated for each type of vector soliton solution, in its respective area of existence. The dependence of the vector soliton characteristics on the (two) carrier wavenumbers and on the spectral index κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} characterizing the electron distribution has been explored. In certain cases, the (envelope) amplitude of one component may exceed its counterpart (second amplitude) by a factor 2.5 or higher, indicating that extremely asymmetric waves may be formed due to modulational interactions among copropagating wavepackets. As κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} decreases from large values, modulational instability occurs in larger areas of the parameter plane(s) and with higher growth rates. The distribution of different types of vector solitons on the parameter plane(s) also varies significantly with decreasing κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}, and in fact dramatically for κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} between 3 and 2. Deviation from the Maxwell-Boltzmann picture therefore seems to favor modulational instability as a precursor to the formation of bright (predominantly) type envelope excitations and freak waves.
引用
收藏
相关论文
共 10 条
  • [1] Electrostatic wave interaction via asymmetric vector solitons as precursor to rogue wave formation in non-Maxwellian plasmas
    Lazarides, N.
    Veldes, Giorgos P.
    Frantzeskakis, D. J.
    Kourakis, Ioannis
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [2] Langmuir wave dispersion relation in non-Maxwellian plasmas
    Ouazene, M.
    Annou, R.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [3] Exploring non-Maxwellian distributions effects on modulational instability and rogue wave triplets in ion-acoustic plasmas
    Khan, Abdullah
    Farooq, Aamir
    Abid, A. A.
    Hussain, Malik Sadam
    Ma, Wen-Xiu
    Shaaban, Shaaban M.
    CHAOS SOLITONS & FRACTALS, 2025, 195
  • [4] Electrostatic wave breaking limit in a cold electronegative plasma with non-Maxwellian electrons
    I. S. Elkamash
    I. Kourakis
    Scientific Reports, 11
  • [5] Electrostatic wave breaking limit in a cold electronegative plasma with non-Maxwellian electrons
    Elkamash, I. S.
    Kourakis, I.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Self-consistent full-wave and Fokker-Planck calculations for ion cyclotron heating in non-Maxwellian plasmas
    Jaeger, E. F.
    Berry, L. A.
    Ahern, S. D.
    Barrett, R. F.
    Batchelor, D. B.
    Carter, M. D.
    D'Azevedo, E. F.
    Moore, R. D.
    Harvey, R. W.
    Myra, J. R.
    D'Ippolito, D. A.
    Dumont, R. J.
    Phillips, C. K.
    Okuda, H.
    Smithe, D. N.
    Bonoli, P. T.
    Wright, J. C.
    Choi, M.
    PHYSICS OF PLASMAS, 2006, 13 (05)
  • [7] Self-consistent full-wave/Fokker-Planck calculations for ion cyclotron heating in non-Maxwellian plasmas
    Jaeger, EF
    Berry, LA
    Harvey, RW
    Myra, JR
    Dumont, RJ
    Phillips, CK
    Smithe, DN
    Batchelor, DB
    Bonoli, PT
    Carter, MD
    D'Azevedo, E
    D'Ippolito, DA
    Wright, JC
    Radio Frequency Power in Plasmas, 2005, 787 : 23 - 30
  • [8] Formation of the rogue wave due to non-linear two-dimensional waves interaction
    Porubov, AV
    Tsuji, H
    Lavrenov, IV
    Oikawa, M
    WAVE MOTION, 2005, 42 (03) : 202 - 210
  • [9] Collisional-radiative model for non-Maxwellian inductively coupled argon plasmas using detailed fine-structure relativistic distorted-wave cross sections
    Dipti
    Gangwar, Reetesh Kumar
    Srivastava, Rajesh
    Stauffer, Allan Daniel
    EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (10):
  • [10] Collisional-radiative model for non-Maxwellian inductively coupled argon plasmas using detailed fine-structure relativistic distorted-wave cross sections
    Reetesh Kumar Dipti
    Rajesh Gangwar
    Allan Daniel Srivastava
    The European Physical Journal D, 2013, 67