A simple approximation to multifractal rainfall maxima using a generalized extreme value distribution model

被引:0
|
作者
Andreas Langousis
Alin A. Carsteanu
Roberto Deidda
机构
[1] University of Patras,Department of Civil Engineering
[2] National Polytechnic Institute,School of Physics and Mathematics
[3] University of Cagliari,Dipartimento di Ingegneria del Territorio
关键词
Rainfall extremes; Extreme-value distributions; Rainfall scaling; Multifractal processes;
D O I
暂无
中图分类号
学科分类号
摘要
Among different approaches that have been proposed to explain the scaling structure of temporal rainfall, a significant body belongs to models based on sequences of independent pulses with internal multifractal structure. Based on a standard asymptotic result from extreme value theory, annual rainfall maxima are typically modelled using a generalized extreme value (GEV) distribution. However, multifractal rainfall maxima converge slowly to a GEV shape, with important shape-parameter estimation issues, especially from short samples. The present work uses results from multifractal theory to propose a solution to the GEV shape-parameter estimation problem, based on an iterative numerical procedure.
引用
收藏
页码:1525 / 1531
页数:6
相关论文
共 50 条
  • [1] A simple approximation to multifractal rainfall maxima using a generalized extreme value distribution model
    Langousis, Andreas
    Carsteanu, Alin A.
    Deidda, Roberto
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (06) : 1525 - 1531
  • [2] Modelling Extreme Rainfall using Extended Generalized Extreme Value Distribution
    Deetae, N.
    Khamrot, P.
    Jampachaisri, K.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [3] Numerical Convergence of the Block-Maxima Approach to the Generalized Extreme Value Distribution
    Faranda, Davide
    Lucarini, Valerio
    Turchetti, Giorgio
    Vaienti, Sandro
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (05) : 1156 - 1180
  • [4] Numerical Convergence of the Block-Maxima Approach to the Generalized Extreme Value Distribution
    Davide Faranda
    Valerio Lucarini
    Giorgio Turchetti
    Sandro Vaienti
    Journal of Statistical Physics, 2011, 145 : 1156 - 1180
  • [5] Comparison of parameters of the generalized extreme value distribution associated with extreme rainfall events in Central America
    Guillen-Oviedo, Helen S.
    Cid-Serrano, Luis R.
    Alfaro-Martinez, Eric J.
    UNICIENCIA, 2020, 34 (01) : 111 - 128
  • [6] Uncertainties of extreme rainfall quantiles estimated by a stochastic rainfall model and by a generalized Pareto distribution
    Muller, Aurelie
    Arnaud, Patrick
    Lang, Michel
    Lavabre, Jacques
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2009, 54 (03): : 417 - 429
  • [7] Modelling of extreme minimum rainfall using generalised extreme value distribution for Zimbabwe
    Chikobvu, Delson
    Chifurira, Retius
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2015, 111 (9-10)
  • [8] The generalized extreme value distribution
    Bali, TG
    ECONOMICS LETTERS, 2003, 79 (03) : 423 - 427
  • [9] Analysis of Carbon Dioxide Value with Extreme Value Theory Using Generalized Extreme Value Distribution
    Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology, Phitsanulok, Lanna, Thailand
    不详
    不详
    不详
    不详
    IAENG Int. J. Appl. Math., 2024, 10 (2108-2117):
  • [10] A simple scaling model for extreme rainfall
    Menabde, M
    Seed, A
    Pegram, G
    WATER RESOURCES RESEARCH, 1999, 35 (01) : 335 - 339