Modeling and inference of forest coverage ratio using zero-one inflated distributions with spatial dependence

被引:0
|
作者
Ryuei Nishii
Shojiro Tanaka
机构
[1] Kyushu University,Institute of Mathematics for Industry
[2] Shimane University,Interdisciplinary Faculty of Science and Engineering
关键词
Box–Cox transformation; Human population density; Logistic-normal regression; Relief energy; Zero-one inflated beta distribution;
D O I
暂无
中图分类号
学科分类号
摘要
This paper explores statistical modeling of forest area with two covariates. The forest coverage ratio of grid-cell data was modeled by taking human population density and relief energy into account. The likelihood of the forest ratios was decomposed into the product of two likelihoods. The first likelihood was due to trinomial logistic distributions on three categories: the forest ratios take zero, or one, or values between zero and one. The second one was due to a logistic-normal regression model for the ratios between zero and one. This model was applied to real grid-cell data and it fit better than zero-inflated beta regression models.
引用
收藏
页码:315 / 336
页数:21
相关论文
共 8 条