Hochschild cohomology rings of tame Hecke algebras

被引:0
|
作者
Yunge Xu
Tiwei Zhao
机构
[1] Hubei University,School of Mathematics and Computer Science
来源
Manuscripta Mathematica | 2013年 / 142卷
关键词
16E40; 16G10;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a tame Hecke algebra of type A. Based on the minimal projective bimodule resolution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathbb{P} , \delta)}$$\end{document} of A constructed by Schroll and Snashall, we first give an explicit description of the so-called “comultiplicative structure” of the generators of each term Pn in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathbb{P} , \delta)}$$\end{document} , and then apply it to define a chain map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta: \mathbb{P} \rightarrow \mathbb{P} \otimes_A \mathbb{P}}$$\end{document} and thus show that the cup product in the level of cochains for the tame Hecke algebra A is essentially juxtaposition of parallel paths up to sign. As a consequence, we determine the structure of the Hochschild cohomology ring of A under the cup product by giving an explicit presentation by generators and relations.
引用
收藏
页码:491 / 512
页数:21
相关论文
共 50 条
  • [1] Hochschild cohomology rings of tame Hecke algebras
    Xu, Yunge
    Zhao, Tiwei
    MANUSCRIPTA MATHEMATICA, 2013, 142 (3-4) : 491 - 512
  • [2] On the Hochschild cohomology of tame Hecke algebras
    Karin Erdmann
    Sibylle Schroll
    Archiv der Mathematik, 2010, 94 : 117 - 127
  • [3] On the Hochschild cohomology of tame Hecke algebras
    Erdmann, Karin
    Schroll, Sibylle
    ARCHIV DER MATHEMATIK, 2010, 94 (02) : 117 - 127
  • [4] HOCHSCHILD COHOMOLOGY AND SUPPORT VARIETIES FOR TAME HECKE ALGEBRAS
    Schroll, Sibylle
    Snashall, Nicole
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (04): : 1017 - 1029
  • [5] Hochschild cohomology of Hecke algebras
    Benson, David J.
    Erdmann, Karin
    JOURNAL OF ALGEBRA, 2011, 336 (01) : 391 - 394
  • [6] Batalin-Vilkovisky Structure on Hochschild Cohomology of Tame Hecke Algebras of Type A
    Hou, Bo
    Wu, Jinzhong
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2159 - 2172
  • [7] Hochschild cohomology and graded Hecke algebras
    Shepler, Anne V.
    Witherspoon, Sarah
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (08) : 3975 - 4005
  • [8] Hochschild cohomology and quantum Drinfeld Hecke algebras
    Deepak Naidu
    Sarah Witherspoon
    Selecta Mathematica, 2016, 22 : 1537 - 1561
  • [9] Hochschild cohomology and quantum Drinfeld Hecke algebras
    Naidu, Deepak
    Witherspoon, Sarah
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1537 - 1561
  • [10] On Hochschild cohomology rings of Fibonacci algebras
    Fan J.
    Xu Y.
    Frontiers of Mathematics in China, 2006, 1 (4) : 526 - 537