Spectral Properties of a Piecewise Linear Intermittent Map

被引:0
|
作者
S. Tasaki
P. Gaspard
机构
[1] Waseda University,Advanced Institute for Complex Systems and Department of Applied Physics, School of Science and Engineering
[2] Université Libre de Bruxelles,Center of Nonlinear Phenomena and Complex Systems
来源
关键词
Generalized spectral decomposition; generalized eigenfunctions; intermittent map; non-normalizable invariant measure;
D O I
暂无
中图分类号
学科分类号
摘要
For a piecewise linear intermittent map, the evolution of statistical averages of a class of observables with respect to piecewise constant initial densities is investigated and generalized eigenfunctions of the Frobenius–Perron operator ^P are explicitly derived. The evolution of the averages are shown to be a superposition of the contributions from two simple eigenvalues 1 and λd∈(−1, 0), and a continuous spectrum on the unit interval [0,1] of ^P. Power-law decay of correlations are controlled by the continuous spectrum. Also the non-normalizable invariant measure in the non-stationary regime is shown to determine the strength of the power-law decay.
引用
收藏
页码:803 / 820
页数:17
相关论文
共 50 条
  • [1] Spectral properties of a piecewise linear intermittent map
    Tasaki, S
    Gaspard, P
    JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (3-4) : 803 - 820
  • [2] Spectral characterization of anomalous diffusion of a periodic piecewise linear intermittent map
    Tasaki, S
    Gaspard, P
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 183 (3-4) : 205 - 219
  • [3] Spectral characterization of anomalous diffusion of a periodic piecewise linear intermittent map
    Tasaki, S
    Gaspard, P
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 187 (1-4) : 51 - 65
  • [4] Spectral analysis and an area-preserving extension of a piecewise linear intermittent map
    Miyaguchi, Tomoshige
    Aizawa, Yoji
    PHYSICAL REVIEW E, 2007, 75 (06):
  • [5] Correlation and spectral properties of chaotic signals generated by a piecewise-linear map with multiple segments
    da Costa, Rafael Alves
    Loiola, Murilo Bellezoni
    Eisencraft, Marcio
    SIGNAL PROCESSING, 2017, 133 : 187 - 191
  • [6] Piecewise linear spectral sequences
    Liu, YM
    Xu, YS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (08) : 2297 - 2308
  • [7] Critical curves of a piecewise linear map
    Roberts, John A. G.
    Saito, Asaki
    Vivaldi, Franco
    CHAOS, 2021, 31 (07)
  • [8] Dynamics of a piecewise linear map with a gap
    Hogan, S. J.
    Higham, L.
    Griffin, T. C. L.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2077): : 49 - 65
  • [9] Intermittent Behaviors in Coupled Piecewise Expanding Map Lattices
    Li, Tiexiang
    Lin, Wen-wei
    Wang, Yiqian
    Yau, Shing-Tung
    ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (04): : 481 - 519
  • [10] Some properties of a two-dimensional piecewise-linear noninvertible map
    Mira, C
    Rauzy, C
    Maistrenko, Y
    Sushko, I
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (12A): : 2299 - 2319