Adsorbate-adsorbent potential energy function from second virial coefficient data: a non-linear Hopfield Neural Network approach

被引:0
|
作者
Felipe Silva Carvalho
João Pedro Braga
Márcio Oliveira Alves
机构
[1] Universidade Federal de Minas Gerais,Departamento de Química
[2] CEFET, ICEx
来源
Journal of Molecular Modeling | 2022年 / 28卷
关键词
Hopfield neural network; Ill-posed inverse problems; Adsorption; Second virial coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
The Hopfield Neural Network has been successfully applied to solve ill-posed inverse problems in different fields of chemistry and physics. In this work, the non-linear approach for this method will be applied to retrieve the empirical parameters of potential energy function, Ep(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{p}(r)$$\end{document}, between adsorbate and adsorbent from experimental data. Since the adsorption data is related to the second virial coefficient and therefore to Ep(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{p}(r)$$\end{document} through an integral equation, the Hopfield Neural Network will be used to find the best parameters which fits the experimental data. Initially simulated results will be analyzed to verify the method performance for data sets with and without noise addition. Then, experimental data for adsorption of propionitrile on activated carbon will be treated. Results presented here corroborate to the robustness of this method.
引用
收藏
相关论文
共 15 条
  • [1] Adsorbate-adsorbent potential energy function from second virial coefficient data: a non-linear Hopfield Neural Network approach
    Carvalho, Felipe Silva
    Braga, Joao Pedro
    Alves, Marcio Oliveira
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (09)
  • [2] Hopfield neural network model for calculating the potential energy function from second virial data
    Braga, JP
    de Almeida, MB
    Braga, AP
    Belchior, JC
    CHEMICAL PHYSICS, 2000, 260 (03) : 347 - 352
  • [3] Recurrent neural network model to retrieve the long range spherical potential energy function from second virial coefficient
    Neves, JL
    Braga, JP
    Braga, AP
    de Almeida, MB
    INVERSE PROBLEMS IN ENGINEERING, 2002, 10 (02): : 153 - 162
  • [4] Functional sensitivity analysis approach to retrieve the potential energy function from the quantum second virial coefficient
    Costa, Ederson D'M.
    Braga, Joao P.
    Lemes, Nelson H. T.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 536
  • [5] Potential energy function from second virial data using sensitivity analysis
    Lemes, N. H. T.
    Sebastiao, R. C. O.
    Braga, J. P.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2006, 14 (06) : 581 - 587
  • [6] Long-range spherical potential energy function from the second virial coefficient using decomposition into subspaces
    Braga, JP
    Neves, JL
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (19) : 4355 - 4358
  • [7] Excitation Forces Estimation for Non-linear Wave Energy Converters: A Neural Network Approach
    Bonfanti, M.
    Carapellese, F.
    Sirigu, S. A.
    Bracco, G.
    Mattiazzo, G.
    IFAC PAPERSONLINE, 2020, 53 (02): : 12334 - 12339
  • [8] Spherical potential energy function from second virial coefficient using Tikhonov regularization and truncated singular value decomposition
    Lemes, NHT
    Braga, JP
    Belchior, JC
    CHEMICAL PHYSICS LETTERS, 1998, 296 (3-4) : 233 - 238
  • [9] DETERMINATION OF POTENTIAL-ENERGY FUNCTION PARAMETERS FROM 2ND VIRIAL-COEFFICIENT DATA
    JONES, DEG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 194 : 70 - PHYS
  • [10] A combined artificial neural network/residual bilinearization approach for obtaining the second-order advantage from three-way non-linear data
    Olivieri, Alejandro C.
    JOURNAL OF CHEMOMETRICS, 2005, 19 (11-12) : 615 - 624