On Hölder Estimates with Loss of Order One for the ∂̄\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {\partial }$\end{document} Equation on a Class of Convex Domains of Infinite Type in ℂ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{3}$\end{document}

被引:0
|
作者
Ly Kim Ha
机构
[1] University of Science,Faculty of Mathematics and Computer Science
[2] Vietnam National University Ho Chi Minh City (VNU-HCM),undefined
关键词
Henkin solution operator; Hölder continuity; Infinite type domains; 32W05; 32F32; 32T25; 32T99;
D O I
10.1007/s40306-018-0288-6
中图分类号
学科分类号
摘要
In this paper, we establish a Hölder continuity with loss of order one for the Cauchy-Riemann equation on a class of smoothly bounded, convex domains of infinite type in the sense of Range in ℂ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{3}$\end{document}. Let Ω be such a domain and let φ be a (0,1)-form defined continuously on Ω̄\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar {\Omega }$\end{document}. Then, if φ is Lipschitz continuity on bΩ, in the sense of distributions, there exists a function u belonging to a “suitable” Hölder class such that ∂̄u=φin Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\partial} u=\varphi \quad \text{ in } {\Omega}. $$\end{document}
引用
收藏
页码:519 / 530
页数:11
相关论文
共 50 条