Hardness of Approximation for Knapsack Problems

被引:0
|
作者
Harry Buhrman
Bruno Loff
Leen Torenvliet
机构
[1] CWI,ILLC
[2] University of Amsterdam,undefined
来源
关键词
Computational complexity; Knapsack problem; Subset-sum; Exponential-time hypothesis; PRAM without bit operations; Algebraic-circuit lower-bounds; Hardness of approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We show various hardness results for knapsack and related problems; in particular we will show that unless the Exponential-Time Hypothesis is false, subset-sum cannot be approximated any better than with an FPTAS. We also provide new unconditional lower bounds for approximating knapsack in Ketan Mulmuley’s parallel PRAM model. Furthermore, we give a simple new algorithm for approximating knapsack and subset-sum, that can be adapted to work for small space, or in small parallel time.
引用
收藏
页码:372 / 393
页数:21
相关论文
共 50 条
  • [1] Hardness of Approximation for Knapsack Problems
    Buhrman, Harry
    Loff, Bruno
    Torenvliet, Leen
    THEORY OF COMPUTING SYSTEMS, 2015, 56 (02) : 372 - 393
  • [2] Approximation algorithms for fractional knapsack problems
    Billionnet, A
    OPERATIONS RESEARCH LETTERS, 2002, 30 (05) : 336 - 342
  • [3] Approximation for knapsack problems with multiple constraints
    Zhang L.
    Zhang Y.
    Journal of Computer Science and Technology, 1999, 14 (4) : 289 - 297
  • [4] Positional Knapsack Problem: NP-hardness and approximation scheme
    Pedrosa, Lehilton L. C.
    da Silva, Mauro R. C.
    Schouery, Rafael C. S.
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 400 - 402
  • [5] HARDNESS OF APPROXIMATION FOR QUANTUM PROBLEMS
    Gharibian, Sevag
    Kempe, Julia
    QUANTUM INFORMATION & COMPUTATION, 2014, 14 (5-6) : 517 - 540
  • [6] Hardness of approximation for quantum problems
    Gharibian, Sevag
    Kempe, Julia
    1600, Rinton Press Inc. (14): : 5 - 6
  • [7] Hardness of Approximation for Quantum Problems
    Gharibian, Sevag
    Kempe, Julia
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 387 - 398
  • [8] Approximation Algorithms for Matroid and Knapsack Means Problems
    Zhao, Ao
    Liu, Qian
    Zhou, Yang
    Li, Min
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2023, 40 (01)
  • [9] Approximation algorithms for knapsack problems with cardinality constraints
    Caprara, A
    Kellerer, H
    Pferschy, U
    Pisinger, D
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 123 (02) : 333 - 345
  • [10] Improved Approximation Results for Stochastic Knapsack Problems
    Bhalgat, Anand
    Goel, Ashish
    Khanna, Sanjeev
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 1647 - 1665