Properties of bounded representations for G-frames

被引:0
|
作者
A. Najati
F. Ghobadzadeh
Y. Khedmati
J. Sedghi Moghaddam
机构
[1] University of Mohaghegh Ardabili,Department of Mathematics, Faculty of Sciences
来源
Journal of Pseudo-Differential Operators and Applications | 2022年 / 13卷
关键词
Representation of a frame; -Frame; Stability; Primary 41A58; 42C15; 47A05;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of the paper is to analyze g-frames of the form {φTi∈B(H,K)}i=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\varphi T^{i} \in B(\mathcal {H},\mathcal {K})\}_{i=0}^\infty $$\end{document}, where T∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in B(\mathcal {H})$$\end{document} and φ∈B(H,K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in B(\mathcal {H},\mathcal {K})$$\end{document}, and discuss the properties of the operator T. We consider stability of g-Riesz sequences of the form {φTi∈B(H,K)}i=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\varphi T^{i} \in B(\mathcal {H},\mathcal {K})\}_{i=0}^\infty $$\end{document}. Finally, a weighted representation of a g frame is introduced and some of its properties are presented. We provide a sufficient condition for a given g-frame Λ={Λi∈B(H,K)}i=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =\{\Lambda _{i}\in {B(\mathcal {H},\mathcal {K})}\}_{i=1}^\infty $$\end{document} to be represented by an operator T∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in B(\mathcal {H})$$\end{document} and a sequence {ai}i=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{a_i\}_{i=1}^\infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Properties of bounded representations for G-frames
    Najati, A.
    Ghobadzadeh, F.
    Khedmati, Y.
    Moghaddam, J. Sedghi
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (01)
  • [2] G-FRAMES WITH BOUNDED LINEAR OPERATORS
    Xiao, Xiang-Chun
    Zhu, Yu-Can
    Shu, Zhi-Biao
    Ding, Ming-Ling
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (02) : 675 - 693
  • [3] Operator representations of g-frames in Hilbert spaces
    Li, Dongwei
    Leng, Jinsong
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09): : 1861 - 1877
  • [4] SOME PROPERTIES ON G-FRAMES
    Wang, Gang
    Wang, Bao-Qin
    Yuan, Li-Xia
    Wang, Ya-Ling
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 359 - 363
  • [5] ON SOME PROPERTIES OF CONTINUOUS G-FRAMES AND RIESZ-TYPE CONTINUOUS G-FRAMES
    Abdollahpour, Mohammad Reza
    Khedmati, Yavar
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (01): : 59 - 74
  • [6] On some properties of continuous g-frames and Riesz-type continuous g-frames
    Mohammad Reza Abdollahpour
    Yavar khedmati
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 59 - 74
  • [7] G-FRAMES AND STABILITY OF G-FRAMES IN HILBERT SPACES
    Najati, Abbas
    Faroughi, M. H.
    Rahimi, Asghar
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2008, 14 (03): : 271 - 286
  • [8] Controlled g-frames and dual g-frames in Hilbert spaces
    Hui-Min Liu
    Yan-Ling Fu
    Yu Tian
    Journal of Inequalities and Applications, 2023
  • [9] Controlled g-frames and dual g-frames in Hilbert spaces
    Liu, Hui-Min
    Fu, Yan-Ling
    Tian, Yu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [10] New properties of phase-retrievable g-frames and exact phase-retrievable g-frames
    He, Miao
    Leng, Jinsong
    Yu, Jiali
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4117 - 4132