The purpose of the paper is to analyze g-frames of the form {φTi∈B(H,K)}i=0∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{\varphi T^{i} \in B(\mathcal {H},\mathcal {K})\}_{i=0}^\infty $$\end{document}, where T∈B(H)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T\in B(\mathcal {H})$$\end{document} and φ∈B(H,K)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi \in B(\mathcal {H},\mathcal {K})$$\end{document}, and discuss the properties of the operator T. We consider stability of g-Riesz sequences of the form {φTi∈B(H,K)}i=0∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{\varphi T^{i} \in B(\mathcal {H},\mathcal {K})\}_{i=0}^\infty $$\end{document}. Finally, a weighted representation of a g frame is introduced and some of its properties are presented. We provide a sufficient condition for a given g-frame Λ={Λi∈B(H,K)}i=1∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda =\{\Lambda _{i}\in {B(\mathcal {H},\mathcal {K})}\}_{i=1}^\infty $$\end{document} to be represented by an operator T∈B(H)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T\in B(\mathcal {H})$$\end{document} and a sequence {ai}i=1∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{a_i\}_{i=1}^\infty $$\end{document}.