The global behaviors for defocusing wave equations in two dimensional exterior region

被引:0
|
作者
Wei Dai
机构
[1] Peking University,Beijing International Center for Mathematical Research
来源
manuscripta mathematica | 2024年 / 174卷
关键词
35L05; 35L15; 35L71;
D O I
暂无
中图分类号
学科分类号
摘要
We study the defocusing semilinear wave equation in R×R2\K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}\times {\mathbb {R}}^2\backslash {{\mathcal {K}}}$$\end{document} with the Dirichlet boundary condition, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {K}}}$$\end{document} is a star-shaped obstacle with smooth boundary. We first show that the potential energy of the solution will decay appropriately. Based on it, we show that the solution also pointwisely decays to 0. Finally, we show that the solution scatters both in energy space and the critical Sobolev space. In general, we show that most of the conclusions obtained in [20], which hold on R1+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{1+2}$$\end{document}, remain valid on R×R2\K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}\times {\mathbb {R}}^{2}\backslash {{\mathcal {K}}}$$\end{document}.
引用
收藏
页码:59 / 71
页数:12
相关论文
共 50 条