We introduce the topologically twisted index for four-dimensional N=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {N}}=1$$\end{document} gauge theories quantized on AdS2×S1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textrm{AdS}_2}\times S^1$$\end{document}. We compute the index by applying supersymmetric localization to partition functions of vector and chiral multiplets on AdS2×T2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textrm{AdS}_2}\times T^2$$\end{document}, with and without a boundary: in both instances we classify normalizability and boundary conditions for gauge, matter and ghost fields. The index is twisted as the dynamical fields are coupled to a R-symmetry background 1-form with non-trivial exterior derivative and proportional to the spin connection. After regularization, the index is written in terms of elliptic gamma functions, reminiscent of four-dimensional holomorphic blocks, and crucially depends on the R-charge.
机构:
Scuola Super Meridionale, Largo S Marcellino 10, I-80138 Naples, Italy
INFN, Sez Napoli, Naples, ItalyScuola Super Meridionale, Largo S Marcellino 10, I-80138 Naples, Italy
Iannotti, Daniele
Pittelli, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
Sez Torino, INFN, Via Pietro Giuria 1, I-10125 Turin, ItalyScuola Super Meridionale, Largo S Marcellino 10, I-80138 Naples, Italy