Bipartite Subgraphs of Graphs with Maximum Degree Three

被引:0
|
作者
Stanisław Bylka
Adam Idzik
Jan Komar
机构
[1] Institute of Computer Science,
[2] Polish Academy of Sciences,undefined
[3] Ordona 21,undefined
[4] 01-237 Warszawa,undefined
[5] Poland.,undefined
来源
Graphs and Combinatorics | 1999年 / 15卷
关键词
Key words: bipartite graph; n-colourable graph; extremal graph.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for a connected graph G with maximum degree 3 there exists a bipartite subgraph of G containing almost \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of the edges of G. Furthermore, we completely characterize the set of all extremal graphs, i.e. all connected graphs G=(V, E) with maximum degree 3 for which no bipartite subgraph has more than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of the edges; |E| denotes the cardinality of E. For 2-edge-connected graphs there are two kinds of extremal graphs which realize the lower bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:129 / 136
页数:7
相关论文
共 50 条