Gamma expansion of the Heston stochastic volatility model

被引:0
|
作者
Paul Glasserman
Kyoung-Kuk Kim
机构
[1] Columbia University,Graduate School of Business
[2] Korea Advanced Institute of Science and Technology,ISE Department
来源
Finance and Stochastics | 2011年 / 15卷
关键词
Stochastic volatility model; Monte Carlo methods; 60H35; 65C05; 91B70; C63; G12; G13;
D O I
暂无
中图分类号
学科分类号
摘要
We derive an explicit representation of the transitions of the Heston stochastic volatility model and use it for fast and accurate simulation of the model. Of particular interest is the integral of the variance process over an interval, conditional on the level of the variance at the endpoints. We give an explicit representation of this quantity in terms of infinite sums and mixtures of gamma random variables. The increments of the variance process are themselves mixtures of gamma random variables. The representation of the integrated conditional variance applies the Pitman–Yor decomposition of Bessel bridges. We combine this representation with the Broadie–Kaya exact simulation method and use it to circumvent the most time-consuming step in that method.
引用
收藏
页码:267 / 296
页数:29
相关论文
共 50 条
  • [1] Gamma expansion of the Heston stochastic volatility model
    Glasserman, Paul
    Kim, Kyoung-Kuk
    FINANCE AND STOCHASTICS, 2011, 15 (02) : 267 - 296
  • [2] On refined volatility smile expansion in the Heston model
    Friz, Peter
    Gerhold, Stefan
    Gulisashvili, Archil
    Sturm, Stephan
    QUANTITATIVE FINANCE, 2011, 11 (08) : 1151 - 1164
  • [3] The Heston stochastic volatility model in Hilbert space
    Benth, Fred Espen
    Simonsen, Iben Cathrine
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) : 733 - 750
  • [4] The rough Hawkes Heston stochastic volatility model
    Bondi, Alessandro
    Pulido, Sergio
    Scotti, Simone
    MATHEMATICAL FINANCE, 2024, 34 (04) : 1197 - 1241
  • [5] The Alpha-Heston stochastic volatility model
    Jiao, Ying
    Ma, Chunhua
    Scotti, Simone
    Zhou, Chao
    MATHEMATICAL FINANCE, 2021, 31 (03) : 943 - 978
  • [6] The Generalized Gamma Distribution as a Useful RND under Heston's Stochastic Volatility Model
    Boukai, Benzion
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2022, 15 (06)
  • [7] The Heston stochastic volatility model has a boundary trace at zero volatility
    Alziary, Benedicte
    Takac, Peter
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [8] The Heston stochastic volatility model has a boundary trace at zero volatility
    Bénédicte Alziary
    Peter Takáč
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [9] Full and fast calibration of the Heston stochastic volatility model
    Cui, Yiran
    Rollin, Sebastian del Bano
    Germano, Guido
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 263 (02) : 625 - 638
  • [10] Stochastic volatility and the goodness-of-fit of the Heston model
    Daniel, G
    Joseph, NL
    Brée, DS
    QUANTITATIVE FINANCE, 2005, 5 (02) : 199 - 211