Temperature dependence of quantum oscillations from non-parabolic dispersions

被引:0
|
作者
Chunyu Guo
A. Alexandradinata
Carsten Putzke
Amelia Estry
Teng Tu
Nitesh Kumar
Feng-Ren Fan
Shengnan Zhang
Quansheng Wu
Oleg V. Yazyev
Kent R. Shirer
Maja D. Bachmann
Hailin Peng
Eric D. Bauer
Filip Ronning
Yan Sun
Chandra Shekhar
Claudia Felser
Philip J. W. Moll
机构
[1] Institute of Materials (IMX),Laboratory of Quantum Materials (QMAT)
[2] École Polytechnique Fédérale de Lausanne (EPFL),Institute for Condensed Matter Theory
[3] University of Illinois at Urbana-Champaign,Department of Physics
[4] University of Illinois at Urbana-Champaign,Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering
[5] Physics Department,Chair of Computational Condensed Matter Physics (C3MP)
[6] University of California Santa Cruz,National Centre for Computational Design and Discovery of Novel Materials MARVEL
[7] Peking University,School of Physics and Astronomy
[8] Max Planck Institute for Chemical Physics of Solids,undefined
[9] Institute of Physics (IPHYS),undefined
[10] École Polytechnique Fédérale de Lausanne (EPFL),undefined
[11] École Polytechnique Fédérale de Lausanne (EPFL),undefined
[12] University of St Andrews,undefined
[13] Los Alamos National Laboratory,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The phase offset of quantum oscillations is commonly used to experimentally diagnose topologically nontrivial Fermi surfaces. This methodology, however, is inconclusive for spin-orbit-coupled metals where π-phase-shifts can also arise from non-topological origins. Here, we show that the linear dispersion in topological metals leads to a T2-temperature correction to the oscillation frequency that is absent for parabolic dispersions. We confirm this effect experimentally in the Dirac semi-metal Cd3As2 and the multiband Dirac metal LaRhIn5. Both materials match a tuning-parameter-free theoretical prediction, emphasizing their unified origin. For topologically trivial Bi2O2Se, no frequency shift associated to linear bands is observed as expected. However, the π-phase shift in Bi2O2Se would lead to a false positive in a Landau-fan plot analysis. Our frequency-focused methodology does not require any input from ab-initio calculations, and hence is promising for identifying correlated topological materials.
引用
收藏
相关论文
共 50 条
  • [1] Temperature dependence of quantum oscillations from non-parabolic dispersions
    Guo, Chunyu
    Alexandradinata, A.
    Putzke, Carsten
    Estry, Amelia
    Tu, Teng
    Kumar, Nitesh
    Fan, Feng-Ren
    Zhang, Shengnan
    Wu, Quansheng
    Yazyev, Oleg, V
    Shirer, Kent R.
    Bachmann, Maja D.
    Peng, Hailin
    Bauer, Eric D.
    Ronning, Filip
    Sun, Yan
    Shekhar, Chandra
    Felser, Claudia
    Moll, Philip J. W.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] de Haas-van Alphen oscillations with non-parabolic dispersions
    Fortin, Jean-Yves
    Audouard, Alain
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (04):
  • [3] de Haas-van Alphen oscillations with non-parabolic dispersions
    Jean-Yves Fortin
    Alain Audouard
    The European Physical Journal B, 2017, 90
  • [4] QUANTUM LIMIT BEHAVIOR OF MAGNETORESISTANCE IN NON-PARABOLIC SEMICONDUCTORS
    KOSSUT, J
    HAJDU, J
    SOLID STATE COMMUNICATIONS, 1978, 27 (12) : 1401 - 1403
  • [5] Quantum oscillations of photocurrents in HgTe quantum wells with Dirac and parabolic dispersions
    Zoth, C.
    Olbrich, P.
    Vierling, P.
    Dantscher, K. -M.
    Bel'kov, V. V.
    Semina, M. A.
    Glazov, M. M.
    Golub, L. E.
    Kozlov, D. A.
    Kvon, Z. D.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    Ganichev, S. D.
    PHYSICAL REVIEW B, 2014, 90 (20)
  • [6] Non-Parabolic Band Hydrodynamic Model for Silicon Quantum Wires
    Castiglione, Tina
    Muscato, Orazio
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2017, 46 (03) : 186 - 201
  • [7] Non-parabolic conical rotations
    Colakoglu, H. Baris
    Ozturk, Iskender
    Ozdemir, Mustafa
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [8] A computationally efficient non-parabolic bandstructure model for quantum transport simulations
    Ziegler, Anne
    Frey, Martin
    Smith, Lee
    Luisier, Mathieu
    2015 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD), 2015, : 36 - 39
  • [9] Non-parabolic model for InAs/GaAs quantum dot capacitance spectroscopy
    Filikhin, I.
    Deyneka, E.
    Vlahovic, B.
    SOLID STATE COMMUNICATIONS, 2006, 140 (9-10) : 483 - 486
  • [10] A new approach to analyzing anisotropic and non-parabolic effects on quantum wires
    Gomez-Campos, F. M.
    Rodriguez-Bolivar, S.
    Carceller, J. E.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (03) : 342 - 345