Absence of wandering domains for some real entire functions with bounded singular sets

被引:0
|
作者
Helena Mihaljević-Brandt
Lasse Rempe-Gillen
机构
[1] Christian-Albrechts-Universität zu Kiel,Mathematisches Seminar
[2] University of Liverpool,Department of Mathematical Sciences
来源
Mathematische Annalen | 2013年 / 357卷
关键词
Primary 37F10; Secondary 30D05; 30F45;
D O I
暂无
中图分类号
学科分类号
摘要
Let f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} be a real entire function whose set S(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(f)$$\end{document} of singular values is real and bounded. We show that, if f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} satisfies a certain function-theoretic condition (the “sector condition”), then f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} has no wandering domains. Our result includes all maps of the form z↦λsinh(z)z+a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\mapsto \lambda \frac{\sinh (z)}{z} + a$$\end{document} with λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} and a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in \mathbb{R }$$\end{document}. We also show the absence of wandering domains for certain non-real entire functions for which S(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(f)$$\end{document} is bounded and fn|S(f)→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^n|_{S(f)}\rightarrow \infty $$\end{document} uniformly. As a special case of our theorem, we give a short, elementary and non-technical proof that the Julia set of the exponential map f(z)=ez\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=e^z$$\end{document} is the entire complex plane. Furthermore, we apply similar methods to extend a result of Bergweiler, concerning Baker domains of entire functions and their relation to the postsingular set, to the case of meromorphic functions.
引用
收藏
页码:1577 / 1604
页数:27
相关论文
共 50 条
  • [1] Absence of wandering domains for some real entire functions with bounded singular sets
    Mihaljevic-Brandt, Helena
    Rempe-Gillen, Lasse
    MATHEMATISCHE ANNALEN, 2013, 357 (04) : 1577 - 1604
  • [2] Wandering domains for composition of entire functions
    Fagella, Nuria
    Godillon, Sebastian
    Jarque, Xavier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) : 478 - 496
  • [3] A landing theorem for entire functions with bounded post-singular sets
    Anna Miriam Benini
    Lasse Rempe
    Geometric and Functional Analysis, 2020, 30 : 1465 - 1530
  • [4] A landing theorem for entire functions with bounded post-singular sets
    Benini, Anna Miriam
    Rempe, Lasse
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (06) : 1465 - 1530
  • [5] On wandering and baker domains of transcendental entire functions
    Wang, XL
    Yang, CC
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (01): : 321 - 327
  • [7] Multiply connected wandering domains of entire functions
    Bergweiler, Walter
    Rippon, Philip J.
    Stallard, Gwyneth M.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 1261 - 1301
  • [8] Permutable entire functions and multiply connected wandering domains
    Benini, Anna Miriam
    Rippon, Philip J.
    Stallard, Gwyneth M.
    ADVANCES IN MATHEMATICS, 2016, 287 : 451 - 462
  • [9] WANDERING DOMAINS IN THE ITERATION OF COMPOSITIONS OF ENTIRE-FUNCTIONS
    BAKER, IN
    SINGH, AP
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1995, 20 (01): : 149 - 153
  • [10] GROWTH OF ENTIRE FUNCTIONS BOUNDED ON LARGE SETS
    HANSEN, LJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (06): : 1287 - 1291