Poincaré/Koszul Duality

被引:0
|
作者
David Ayala
John Francis
机构
[1] Montana State University,Department of Mathematics
[2] Northwestern University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove a duality for factorization homology which generalizes both usual Poincaré duality for manifolds and Koszul duality for En\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}_n}$$\end{document}-algebras. The duality has application to the Hochschild homology of associative algebras and enveloping algebras of Lie algebras. We interpret our result at the level of topological quantum field theory.
引用
收藏
页码:847 / 933
页数:86
相关论文
共 50 条
  • [1] From Koszul duality to Poincaré duality
    MICHEL DUBOIS-VIOLETTE
    Pramana, 2012, 78 : 947 - 961
  • [2] Gale duality and Koszul duality
    Braden, Tom
    Licata, Anthony
    Proudfoot, Nicholas
    Webster, Ben
    ADVANCES IN MATHEMATICS, 2010, 225 (04) : 2002 - 2049
  • [3] Generalized Koszul algebra and Koszul duality
    Li, Haonan
    Wu, Quanshui
    JOURNAL OF ALGEBRA, 2023, 619 : 643 - 685
  • [4] Ringel duality as an instance of Koszul duality
    Bodzenta, Agnieszka
    Kuelshammer, Julian
    JOURNAL OF ALGEBRA, 2018, 506 : 129 - 187
  • [5] From Koszul duality to Poincare duality
    Dubois-Violette, Michel
    PRAMANA-JOURNAL OF PHYSICS, 2012, 78 (06): : 947 - 961
  • [6] Chiral Koszul duality
    Francis, John
    Gaitsgory, Dennis
    SELECTA MATHEMATICA-NEW SERIES, 2012, 18 (01): : 27 - 87
  • [7] Modular Koszul duality
    Riche, Simon
    Soergel, Wolfgang
    Williamson, Geordie
    COMPOSITIO MATHEMATICA, 2014, 150 (02) : 273 - 332
  • [8] Chiral Koszul duality
    John Francis
    Dennis Gaitsgory
    Selecta Mathematica, 2012, 18 : 27 - 87
  • [9] Linear Koszul duality
    Mirkovic, Ivan
    Riche, Simon
    COMPOSITIO MATHEMATICA, 2010, 146 (01) : 233 - 258
  • [10] Poincare/Koszul Duality
    Ayala, David
    Francis, John
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 365 (03) : 847 - 933