Tail asymptotics for M/G/1 type queueing processes with subexponential increments

被引:0
|
作者
Søren Asmussen
Jakob R. Møller
机构
[1] University of Lund,Department of Mathematical Statistics
来源
Queueing Systems | 1999年 / 33卷
关键词
M/G/1 queues; tail asymptotics; subexponential distributions;
D O I
暂无
中图分类号
学科分类号
摘要
Bivariate regenerative Markov modulated queueing processes {In,Ln} are described. {In} is the phase process, and {Ln} is the level process. Increments in the level process have subexponential distributions. A general boundary behavior at the level 0 is allowed. The asymptotic tail of the cycle maximum, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$M_{C^{{reg}} } $$ \end{document}, during a regenerative cycle, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C^{{reg}} $$ \end{document}, and the asymptotic tail of the stationary random variable L∞, respectively, of the level process are given and shown to be subexponential with L∞ having the heavier tail.
引用
收藏
页码:153 / 176
页数:23
相关论文
共 50 条