Bivariate regenerative Markov modulated queueing processes {In,Ln} are described. {In} is the phase process, and {Ln} is the level process. Increments in the level process have subexponential distributions. A general boundary behavior at the level 0 is allowed. The asymptotic tail of the cycle maximum, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$M_{C^{{reg}} } $$
\end{document}, during a regenerative cycle, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$C^{{reg}} $$
\end{document}, and the asymptotic tail of the stationary random variable L∞, respectively, of the level process are given and shown to be subexponential with L∞ having the heavier tail.