Posterior Analysis of Stochastic Frontier Models with Truncated Normal Errors

被引:0
|
作者
Efthymios G. Tsionas
机构
[1] Athens University of Economics and Business,Department of Economics
来源
Computational Statistics | 2001年 / 16卷
关键词
Stochastic frontier model; Efficiency; Truncated normal distribution; Bayesian analysis; Gibbs sampling;
D O I
暂无
中图分类号
学科分类号
摘要
Previous work in stochastic frontier models with exponentially distributed one-sided errors using both Gibbs sampling and Monte Carlo integration with importance sampling reveals the enormous computational gains that can be achieved using the former. This paper takes up inference in another interesting class of stochastic frontier models, those with truncated normal one-sided error terms, and shows that posterior simulation involves drawing from standard or log-concave distributions, implying that Gibbs sampling is an efficient solution to the Bayesian integration problem. The sampling behavior of the Bayesian procedure is investigated using a Monte Carlo experiment. The method is illustrated using US airline data.
引用
收藏
页码:559 / 575
页数:16
相关论文
共 50 条
  • [1] Posterior analysis of stochastic frontier models with truncated normal errors
    Tsionas, EG
    COMPUTATIONAL STATISTICS, 2001, 16 (04) : 559 - 575
  • [2] POSTERIOR ANALYSIS OF STOCHASTIC FRONTIER MODELS USING GIBBS SAMPLING
    KOOP, G
    STEEL, MFJ
    OSIEWALSKI, J
    COMPUTATIONAL STATISTICS, 1995, 10 (04) : 353 - 373
  • [3] A Bayesian estimator for stochastic frontier models with errors in variables
    Chang, Sheng-Kai
    Chen, Yi-Yi
    Wang, Hung-Jen
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2012, 38 (01) : 1 - 9
  • [4] A Bayesian estimator for stochastic frontier models with errors in variables
    Sheng-Kai Chang
    Yi-Yi Chen
    Hung-Jen Wang
    Journal of Productivity Analysis, 2012, 38 : 1 - 9
  • [5] Pitfalls of Normal-Gamma Stochastic Frontier Models
    Christian Ritter
    Léopold Simar
    Journal of Productivity Analysis, 1997, 8 : 167 - 182
  • [6] Pitfalls of normal-gamma stochastic frontier models
    Ritter, C
    Simar, L
    JOURNAL OF PRODUCTIVITY ANALYSIS, 1997, 8 (02) : 167 - 182
  • [7] Sensitivity analysis of stochastic frontier analysis models
    Sakouvogui, Kekoura
    Shaik, Saleem
    Doetkott, Curt
    Magel, Rhonda
    MONTE CARLO METHODS AND APPLICATIONS, 2021, 27 (01): : 71 - 90
  • [8] Multivariate Skew Normal-Based Stochastic Frontier Models
    Zhu, Xiaonan
    Wei, Zheng
    Wang, Tonghui
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (02)
  • [9] Multivariate Skew Normal-Based Stochastic Frontier Models
    Xiaonan Zhu
    Zheng Wei
    Tonghui Wang
    Journal of Statistical Theory and Practice, 2022, 16
  • [10] Full Likelihood Inference in Normal-Gamma Stochastic Frontier Models
    Efthymios G. Tsionas
    Journal of Productivity Analysis, 2000, 13 : 183 - 205