A multi-scale attentive recurrent network for image dehazing

被引:0
|
作者
Yibin Wang
Shibai Yin
Anup Basu
机构
[1] Sichuan Normal University,Department of Engineering
[2] Southwestern University of Finance and Economics,Department of Economic Information Engineering
[3] University of Alberta,Department of Computing Science
来源
关键词
Encoder-decoder network; Image dehazing; Multi-scale fusion; Recurrent residual operation;
D O I
暂无
中图分类号
学科分类号
摘要
Image dehazing is a pre-processing step in computer vision tasks, that has attracted considerable attention from the research community. Existing CNN-based methods ignore haze-related priors and rarely use a coarse-to-fine scheme in a feed-forward architecture to remove haze due to increasing network depth and parameters. This results in sub-optimal dehazing results. To address these problems, a multi-scale attentive recurrent network is proposed for image dehazing, which consists of a haze attention map predicted network and a recurrent encoder-decoder network. First, by assuming that haze in an image is formed by multiple layers with different depths, the haze attention map predicted network is designed for generating the map with multiple stages via a multi-scale recurrent framework. Second, the haze attention map is viewed as the haze-related prior and guides the subsequent recurrent encoder-decoder network to be aware of haze concentration information. Finally, for leveraging the intermediate information and optimizing the dehazing result with less parameters and more robust features, the recurrent residual operations which pass the features of selected layers at the current time step to the corresponding layers at the next time step are applied in the recurrent encoder-decoder network for removing haze following a coarse-to-fine strategy. Experiments on synthetic and real images demonstrate that our method outperforms state-of-the-art methods considering both visual and quantitative evaluations. In addition, our method is also suitable for real-time processing.
引用
收藏
页码:32539 / 32565
页数:26
相关论文
共 50 条
  • [1] A multi-scale attentive recurrent network for image dehazing
    Wang, Yibin
    Yin, Shibai
    Basu, Anup
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 32539 - 32565
  • [2] Multi-Scale Attentive Feature Fusion Network for Single Image Dehazing
    Zhang, Chenxi
    Wu, Chunming
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [3] Multi-scale recurrent attention gated fusion network for single image dehazing
    Zhang, Xiangfen
    Yang, Shuo
    Zhang, Qingyi
    Yuan, Feiniu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101
  • [4] Multi-scale residual attention network for single image dehazing
    Sheng, Jiechao
    Lv, Guoqiang
    Du, Gang
    Wang, Zi
    Feng, Qibin
    DIGITAL SIGNAL PROCESSING, 2022, 121
  • [5] Lightweight Multi-scale Attentional Network for Single Image Dehazing
    Zong, Ping
    Li, Jinjiang
    Hua, Zhen
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 401 - 405
  • [6] Multi-scale depth information fusion network for image dehazing
    Guodong Fan
    Zhen Hua
    Jinjiang Li
    Applied Intelligence, 2021, 51 : 7262 - 7280
  • [7] Multi-scale depth information fusion network for image dehazing
    Fan, Guodong
    Hua, Zhen
    Li, Jinjiang
    APPLIED INTELLIGENCE, 2021, 51 (10) : 7262 - 7280
  • [8] Multi-scale Attentive Residual Network for Single Image Deraining
    Tan, Jing
    Zhang, Yu
    Fu, Huiyuan
    Ma, Huadong
    Gao, Ning
    HUMAN CENTERED COMPUTING, 2019, 11956 : 351 - 362
  • [9] Speaker verification using attentive multi-scale convolutional recurrent network
    Li, Yanxiong
    Jiang, Zhongjie
    Cao, Wenchang
    Huang, Qisheng
    APPLIED SOFT COMPUTING, 2022, 126
  • [10] Multi-scale Adaptive Dehazing Network
    Chen, Shuxin
    Chen, Yizi
    Qu, Yanyun
    Huang, Jingying
    Hong, Ming
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 2051 - 2059