Our previous study showed that high-grade astrocytomas often expressed high interleukin (IL)-1beta production. Coexpression of IL-1beta and IL-6 has been found in a number of glioma samples and glioma cell lines. To characterize the expression of IL-6 in the human glioma microenvironment, we investigated surgically excised human gliomas, human glioblastoma xenografts, and human glioblastoma cell lines using the reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA). In the 29 primary gliomas, transcripts of IL-6 were less frequently detectable (55.6%) than those of IL-1beta (72.4%) or those of IL-10, IL-8, or IL-1alpha (>80% each). As for IL-6 gene expression, little or no transcription was observed in low-grade astrocytomas, oligodendroglial tumors, and 1 ependymoma. Strong IL-6 gene expression was found in only 5 of 9 glioblastomas. Immunohistochemically, IL-6 antigen was localized in the tumor cells and macrophages in 4 of 7 glioblastomas. In 3 glioblastomas transplanted into nude mice, both IL-1beta and IL-6 were detected only in 1, but othercytokines (IL-8, IL-10, and IL-1alpha) were detected in all 3 xenografts by RT-PCR. Two cell lines both showed IL-6 expression at the mRNA level, and in a cell line with a high level of IL-6 and IL-1beta transcripts, significant production of IL-6 was observed by IHC and ELISA. We concluded that IL-6 produced in tumor tissue may be involved in tumor progression in some glioblastomas, but not in low-grade astrocytomas and oligodendroglial tumors, and that IL-6 gene expression is closely correlated with IL-1beta expression in biopsy tissue, xenografts, and cultures of human gliomas.