A conjectural asymptotic formula for multiplicative chaos in number theory

被引:0
|
作者
Daksh Aggarwal
Unique Subedi
William Verreault
Asif Zaman
Chenghui Zheng
机构
[1] Brown University,Department of Mathematics
[2] University of Michigan,Department of Statistics
[3] Université Laval,Département de Mathématiques et de Statistique
[4] University of Toronto,Department of Mathematics
[5] University of Toronto,Department of Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a special sequence of random variables A(N) defined by an exponential power series with independent standard complex Gaussians (X(k))k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X(k))_{k \ge 1}$$\end{document}. Introduced by Hughes, Keating, and O’Connell in the study of random matrix theory, this sequence relates to Gaussian multiplicative chaos (in particular “holomorphic multiplicative chaos” per Najnudel, Paquette, and Simm) and random multiplicative functions. Soundararajan and Zaman recently determined the order of E[|A(N)|]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}[|A(N)|]$$\end{document}. By constructing an algorithm to calculate A(N) in O(N2logN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^2 \log N)$$\end{document} steps, we produce computational evidence that their result can likely be strengthened to an asymptotic result with a numerical estimate for the asymptotic constant. We also obtain similar conclusions when A(N) is defined using standard real Gaussians or uniform ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document} random variables. However, our evidence suggests that the asymptotic constants do not possess a natural product structure.
引用
收藏
相关论文
共 50 条