Hilbert’s Tenth Problem;
Undecidability;
Elliptic curves;
Function fields;
11U05;
03B25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let K be the function field of a variety of dimension ≥ 2 over an algebraically closed field of odd characteristic. Then Hilbert’s Tenth Problem for K is undecidable. This generalizes the result by Kim and Roush from 1992 that Hilbert’s Tenth Problem for the purely transcendental function field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{{\overline{\mathbb{F}}_p}}(t_1,t_2)}$$\end{document} is undecidable when p > 2.