Fake news detection based on news content and social contexts: a transformer-based approach

被引:0
|
作者
Shaina Raza
Chen Ding
机构
[1] Ryerson University,
关键词
Fake news; Social contexts; Concept drift; Weak supervision; Transformer; User credibility; Zero shot learning;
D O I
暂无
中图分类号
学科分类号
摘要
Fake news is a real problem in today’s world, and it has become more extensive and harder to identify. A major challenge in fake news detection is to detect it in the early phase. Another challenge in fake news detection is the unavailability or the shortage of labelled data for training the detection models. We propose a novel fake news detection framework that can address these challenges. Our proposed framework exploits the information from the news articles and the social contexts to detect fake news. The proposed model is based on a Transformer architecture, which has two parts: the encoder part to learn useful representations from the fake news data and the decoder part that predicts the future behaviour based on past observations. We also incorporate many features from the news content and social contexts into our model to help us classify the news better. In addition, we propose an effective labelling technique to address the label shortage problem. Experimental results on real-world data show that our model can detect fake news with higher accuracy within a few minutes after it propagates (early detection) than the baselines.
引用
收藏
页码:335 / 362
页数:27
相关论文
共 50 条
  • [1] Fake news detection based on news content and social contexts: a transformer-based approach
    Raza, Shaina
    Ding, Chen
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2022, 13 (04) : 335 - 362
  • [2] Automatic Fake News Detection in Political Platforms - A Transformer-based Approach
    Raza, Shaina
    CASE 2021: THE 4TH WORKSHOP ON CHALLENGES AND APPLICATIONS OF AUTOMATED EXTRACTION OF SOCIO-POLITICAL EVENTS FROM TEXT (CASE), 2021, : 68 - 78
  • [3] A Hybrid Transformer-Based Model for Optimizing Fake News Detection
    Al-Quayed, Fatima
    Javed, Danish
    Jhanjhi, N. Z.
    Humayun, Mamoona
    Alnusairi, Thanaa S.
    IEEE ACCESS, 2024, 12 : 160822 - 160834
  • [4] A transformer-based architecture for fake news classification
    Divyam Mehta
    Aniket Dwivedi
    Arunabha Patra
    M. Anand Kumar
    Social Network Analysis and Mining, 2021, 11
  • [5] A transformer-based architecture for fake news classification
    Mehta, Divyam
    Dwivedi, Aniket
    Patra, Arunabha
    Anand Kumar, M.
    SOCIAL NETWORK ANALYSIS AND MINING, 2021, 11 (01)
  • [6] A Transformer-Based Approach to Multilingual Fake News Detection in Low-Resource Languages
    De, Arkadipta
    Bandyopadhyay, Dibyanayan
    Gain, Baban
    Ekbal, Asif
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2022, 21 (01)
  • [7] An emotion-driven, transformer-based network for multimodal fake news detection
    Yadav, Ashima
    Gupta, Anika
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (01)
  • [8] Romanian Fake News Detection Using Machine Learning and Transformer-Based Approaches
    Moisi, Elisa Valentina
    Mihalca, Bogdan Cornel
    Coman, Simina Maria
    Pater, Alexandrina Mirela
    Popescu, Daniela Elena
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [9] Performance Evaluation of Transformer-based NLP Models on Fake News Detection Datasets
    Babu, Raveen Narendra
    Lung, Chung-Horng
    Zaman, Marzia
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 316 - 321
  • [10] Multimodal Fake News Detection on Fakeddit Dataset Using Transformer-Based Architectures
    Kalra, Sakshi
    Kumar, Chitneedi Hemanth Sai
    Sharma, Yashvardhan
    Chauhan, Gajendra Singh
    MACHINE LEARNING, IMAGE PROCESSING, NETWORK SECURITY AND DATA SCIENCES, MIND 2022, PT II, 2022, 1763 : 281 - 292