Theta divisors and the geometry of tautological model

被引:0
|
作者
Sonia Brivio
机构
[1] Dipartimento di Matematica e Applicazioni Universitá di Milano- Bicocca,
来源
Collectanea Mathematica | 2018年 / 69卷
关键词
Vector bundles; Theta divisors; Moduli spaces; Tautological map;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a stable vector bundle of rank r and slope 2g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g-1$$\end{document} on a smooth irreducible complex projective curve C of genus g≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 3$$\end{document}. In this paper we show a relation between theta divisor ΘE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _E$$\end{document} and the geometry of the tautological model PE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_E$$\end{document} of E. In particular, we prove that for r>g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r > g-1$$\end{document}, if C is a Petri curve and E is general in its moduli space then ΘE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _E$$\end{document} defines an irreducible component of the variety parametrizing (g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)$$\end{document}-linear spaces which are g-secant to the tautological model PE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_E$$\end{document}. Conversely, for a stable, (g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)$$\end{document}-very ample vector bundle E, the existence of an irreducible non special component of dimension g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-1$$\end{document} of the above variety implies that E admits theta divisor.
引用
收藏
页码:131 / 150
页数:19
相关论文
共 50 条
  • [1] Theta divisors and the geometry of tautological model
    Brivio, Sonia
    COLLECTANEA MATHEMATICA, 2018, 69 (01) : 131 - 150
  • [2] Singularities of theta divisors in algebraic geometry
    Casalaina-Martin, Sebastian
    CURVES AND ABELIAN VARIETIES, 2008, 465 : 25 - 43
  • [3] Singularities of theta divisors and the geometry of A5
    Farkas, G.
    Grushevsky, S.
    Manni, R. Salvati
    Verra, A.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (09) : 1817 - 1848
  • [4] Tautological systems and free divisors
    Narvaez Macarro, Luis
    Sevenheck, Christian
    ADVANCES IN MATHEMATICS, 2019, 352 : 372 - 405
  • [5] Singularities of theta divisors and the birational geometry of irregular varieties
    Ein, L
    Lazarsfeld, R
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (01) : 243 - 258
  • [6] Some remarks on the geometry of the tautological model
    Alberto Alzati
    Alfonso Tortora
    Collectanea Mathematica, 2024, 75 : 9 - 25
  • [7] Some remarks on the geometry of the tautological model
    Alzati, Alberto
    Tortora, Alfonso
    COLLECTANEA MATHEMATICA, 2024, 75 (01) : 9 - 25
  • [8] Generic vanishing in characteristic p > 0 and the geometry of theta divisors
    Hacon, Christopher D.
    Patakfalvi, Zsolt
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2022, 15 (1-2): : 215 - 244
  • [9] Powers of the Theta Divisor and Relations in the Tautological Ring
    Clader, Emily
    Grushevsky, Samuel
    Janda, Felix
    Zakharov, Dmitry
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (24) : 7725 - 7754
  • [10] A note on congruences for theta divisors
    Heinloth, Franziska
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (5-6) : 301 - 303