Congruence kernels in Ockham algebras

被引:0
|
作者
T. S. Blyth
H. J. Silva
机构
[1] University of St Andrews,Mathematical Institute
[2] Universidade Nova de Lisboa,Centro de Matemática e Aplicações (CMA), Departamento de Matemática, F.C.T.
来源
Algebra universalis | 2017年 / 78卷
关键词
Ockham algebra; congruence; kernel ideal; Primary: 06D30; Secondary 06D05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider, in the context of an Ockham algebra L=(L;f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{L} = (L; f)}}$$\end{document}, the ideals I of L that are kernels of congruences on L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document}. We describe the smallest and the largest congruences having a given kernel ideal, and show that every congruence kernel I≠L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I \neq L}$$\end{document} is the intersection of the prime ideals P such that I⊆P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I \subseteq P}$$\end{document}, P∩f(I)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P \cap f(I) = \emptyset}$$\end{document}, and f2(I)⊆P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f^{2}(I) \subseteq P}$$\end{document}. The congruence kernels form a complete lattice which in general is not modular. For every non-empty subset X of L, we also describe the smallest congruence kernel to contain X, in terms of which we obtain necessary and sufficient conditions for modularity and distributivity. The case where L is of finite length is highlighted.
引用
收藏
页码:55 / 65
页数:10
相关论文
共 50 条
  • [1] Congruence kernels in Ockham algebras
    Blyth, T. S.
    Silva, H. J.
    ALGEBRA UNIVERSALIS, 2017, 78 (01) : 55 - 65
  • [2] CONGRUENCE KERNELS OF ORTHOIMPLICATION ALGEBRAS
    Chajda, I.
    Halas, R.
    Laenger, H.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2007, 76 (02): : 231 - 240
  • [3] Ideals and congruence kernels of algebras
    Chajda, I
    Rosenberg, IG
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1996, 46 (04) : 733 - 744
  • [4] Congruence kernels of orthomodular implication algebras
    Chajda, Ivan
    Halas, Radomir
    Laenger, Helmut
    DISCRETE MATHEMATICS, 2008, 308 (20) : 4724 - 4733
  • [5] Kernel L-Ideals and L-Congruence on a Subclass of Ockham Algebras
    Alemayehu, Teferi Getachew
    Engidaw, Derso Abeje
    Addis, Gezahagne Mulat
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [6] SIMPLE OCKHAM ALGEBRAS
    FANG JIE Department of Mathematics
    ChineseAnnalsofMathematics, 1996, (02) : 213 - 218
  • [7] Minimal Ockham algebras
    Silva, H. J.
    ALGEBRA UNIVERSALIS, 2012, 67 (04) : 393 - 395
  • [8] Minimal Ockham algebras
    H. J. Silva
    Algebra universalis, 2012, 67 : 393 - 395
  • [9] A subclass of Ockham algebras
    Jie Fang
    Zhong Ju Sun
    Acta Mathematica Sinica, English Series, 2012, 28 : 2115 - 2128
  • [10] Ockham algebras with pseudocomplementation
    Blyth, TS
    Fang, J
    Varlet, JC
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (11) : 3605 - 3615