Thin-walled Beams: A Derivation of Vlassov Theory via Γ-Convergence

被引:0
|
作者
Lorenzo Freddi
Antonino Morassi
Roberto Paroni
机构
[1] Università di Udine,Dipartimento di Matematica e Informatica
[2] Università di Udine,Dipartimento di Georisorse e Territorio
[3] Università degli Studi di Sassari,Dipartimento di Architettura e Pianificazione
来源
Journal of Elasticity | 2007年 / 86卷
关键词
thin-walled cross-section beams; linear elasticity; Γ-convergence; dimension reduction; 74K20; 74B10; 49J45;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the asymptotic analysis of the three-dimensional problem for a linearly elastic cantilever having an open cross-section which is the union of rectangles with sides of order ε and ε2, as ε goes to zero. Under suitable assumptions on the given loads and for homogeneous and isotropic material, we show that the three-dimensional problem Γ-converges to the classical one-dimensional Vlassov model for thin-walled beams.
引用
收藏
页码:263 / 296
页数:33
相关论文
共 50 条
  • [1] Thin-walled beams:: A derivation of Vlassov theory via Γ-convergence
    Freddi, Lorenzo
    Morassi, Antonino
    Paroni, Roberto
    JOURNAL OF ELASTICITY, 2007, 86 (03) : 263 - 296
  • [2] A new derivation of the buckling theory of thin-walled beams
    Tong, GS
    Lei, Z
    ADVANCES IN STEEL STRUCTURES, VOLS I & II, PROCEEDINGS, 2002, : 129 - 137
  • [3] FORMAL ASYMPTOTIC ANALYSIS OF ELASTIC BEAMS AND THIN-WALLED BEAMS: A DERIVATION OF THE VLASSOV EQUATIONS AND THEIR GENERALIZATION TO THE ANISOTROPIC HETEROGENEOUS CASE
    Ballard, Patrick
    Miara, Bernadette
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (06): : 1547 - 1588
  • [4] Composite Thin-Walled Beams by Γ-Convergence: From Theory to Application
    Davini, Cesare
    Freddi, Lorenzo
    Paroni, Roberto
    VARIATIONAL ANALYSIS AND AEROSPACE ENGINEERING: MATHEMATICAL CHALLENGES FOR THE AEROSPACE OF THE FUTURE, 2016, 116 : 145 - 168
  • [5] Application of DKMQ24 shell element for twist of thin-walled beams: Comparison with Vlassov theory
    Maknun, Imam Jauhari
    Katili, Irwan
    Millet, Olivier
    Hamdouni, Aziz
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2016, 17 (5-6): : 391 - 400
  • [6] Distortional theory of thin-walled beams
    Jönsson, J
    THIN-WALLED STRUCTURES, 1999, 33 (04) : 269 - 303
  • [7] Theory of anisotropic thin-walled beams
    Volovoi, VV
    Hodges, DH
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2000, 67 (03): : 453 - 459
  • [8] Buckling of thin-walled beams by a refined theory
    Syed Muhammad IBRAHIM
    Erasmo CARRERA
    Marco PETROLO
    Enrico ZAPPINO
    Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2012, 13 (10) : 747 - 759
  • [9] A BEAM THEORY FOR THIN-WALLED COMPOSITE BEAMS
    BANK, LC
    BEDNARCZYK, PJ
    COMPOSITES SCIENCE AND TECHNOLOGY, 1988, 32 (04) : 265 - 277
  • [10] Thin-walled composite beams: Theory and application
    Virginia Polytechnic and State University, Blacksburg, VA, United States
    不详
    Solid Mech. Appl., 2006, (1-633):