Uncertainty principles of Heisenberg type on Dirichlet space

被引:0
|
作者
Soltani F. [1 ,2 ]
机构
[1] Laboratoire d’Analyse Mathématique et Applications LR11ES11, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis
[2] Ecole Nationale d’Ingénieurs de Carthage, Université de Carthage, Tunis
关键词
Dirichlet spaces; Operators on Dirichlet spaces; Uncertainty inequality;
D O I
10.1007/s11565-021-00355-9
中图分类号
学科分类号
摘要
In this paper, we introduce a family of Dirichlet spaces {Dn}n∈N. This family satisfies the continuous inclusions Dn⊂ ⋯ ⊂ D2⊂ D1⊂ D= D, where D is the classical Dirichlet space. Next, we define and study the operator Xf(z) : = f′(z) - f′(0) and its adjoint operator Yf(z) = z2f′(z) on the Dirichlet space D, and we establish an uncertainty inequality of Heisenberg type for this space. A more general uncertainty inequality for the space Dn is also given when we considered the operators Xn= Xn and Yn= Yn. © 2021, Università degli Studi di Ferrara.
引用
收藏
页码:191 / 202
页数:11
相关论文
共 50 条
  • [1] Heisenberg Uncertainty Principles for the Dunkl-Type Fock Space
    Fethi Soltani
    Meriem Nenni
    Complex Analysis and Operator Theory, 2023, 17
  • [2] Heisenberg Uncertainty Principles for the Dunkl-Type Fock Space
    Soltani, Fethi
    Nenni, Meriem
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (06)
  • [3] Uncertainty principles of Heisenberg type for the Bargmann transform
    Soltani, Fethi
    AFRIKA MATEMATIKA, 2021, 32 (7-8) : 1629 - 1643
  • [4] Uncertainty principles of Heisenberg type for the Bargmann transform
    Fethi Soltani
    Afrika Matematika, 2021, 32 : 1629 - 1643
  • [5] Heisenberg-type uncertainty principles for the Dunkl-Weinstein transform
    Soltani, Fethi
    Maktouf, Ibrahim
    Nefzi, Walid
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (06)
  • [6] Heisenberg Uncertainty Principles for the Dunkl Multipier Operators
    Soltani F.
    Rejeb S.B.
    Journal of Mathematical Sciences, 2018, 228 (6) : 695 - 704
  • [7] Some uncertainty principles for the quaternion Heisenberg group
    Bouhrara, Adil
    Kabbaj, Samir
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (03)
  • [8] Heisenberg Uncertainty Principles for an Oscillatory Integral Operator
    Castro, L. P.
    Guerra, R. C.
    Tuan, N. M.
    ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [9] Lower bounds for Dirichlet Laplacians and uncertainty principles
    Stollmann, Peter
    Stolz, Guenter
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (07) : 2337 - 2360
  • [10] Uncertainty principles for the Weinstein type Segal-Bargmann space
    Soltani F.
    Saadi H.
    Journal of Mathematical Sciences, 2023, 271 (4) : 468 - 481