Post-quantum security on the Lai–Massey scheme

被引:0
|
作者
Zhongya Zhang
Wenling Wu
Han Sui
Bolin Wang
机构
[1] Chinese Academy of Sciences,Trusted Computing and Information Assurance Laboratory, Institute of Software
[2] Henan University of Science and Technology,Information Engineering College
[3] Zhongguancun Laboratory,undefined
来源
关键词
Post-quantum cryptography; Block cipher; Quantum cryptanalysis; Lai–Massey scheme; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
Post-quantum cryptography has attracted much attention from worldwide cryptologists. A growing number of symmetric cryptography algorithms have been analyzed in the quantum settings. Lai–Massey scheme was analysed by Vaudenay in Asiacrypt’99, based on the IDEA block cipher, and widely used in the design of symmetric cryptographic algorithms. In this work, we study the security on the Lai–Massey scheme in the quantum setting, and give a general technique to simulate the XOR of left and right parts of outputs of quantum oracles without destroying quantum entanglements. We show that the 3-round and 4-round Lai–Massey scheme are insecure, which can be distinguished from a random permutation in polynomial time in the quantum chosen-plaintext (qCPA) setting and quantum chosen ciphertext attack (qCCA) setting based on Simon’s algorithm, respectively. We also introduce quantum key-recovery attacks on the Lai–Massey scheme by applying the combination of Simon’s and Grover’s algorithms. For r-round Lai-Massey scheme, the key-recovery query complexity are O(2(r-3)k/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({2^{(r - 3)k/2}})$$\end{document} and O(2(r-4)k/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({2^{(r - 4)k/2}})$$\end{document} in the qCPA and qCCA setting respectively, where k is the bit length of a round sub-key. The query complexities are better than the quantum brute force search by factors 23k/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^{3k/2}}$$\end{document} and 22k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^{2k}}$$\end{document} respectively.
引用
收藏
页码:2687 / 2704
页数:17
相关论文
共 50 条
  • [1] Post-quantum security on the Lai-Massey scheme
    Zhang, Zhongya
    Wu, Wenling
    Sui, Han
    Wang, Bolin
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (08) : 2687 - 2704
  • [2] On the Lai-Massey scheme
    Vaudenay, S
    ADVANCES IN CRYPTOLOGY - ASIACRYPT'99, PROCEEDINGS, 1999, 1716 : 8 - 19
  • [3] Generic attacks on the Lai–Massey scheme
    Yiyuan Luo
    Xuejia Lai
    Yujie Zhou
    Designs, Codes and Cryptography, 2017, 83 : 407 - 423
  • [4] On the pseudorandomness of the Lai-Massey scheme
    Guo, R. (guorui201@sohu.com), 1600, Science Press (36):
  • [5] A note on quantum security for post-quantum cryptography
    Song, Fang
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8772 : 246 - 265
  • [6] A Note on Quantum Security for Post-Quantum Cryptography
    Song, Fang
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2014, 2014, 8772 : 246 - 265
  • [7] Quantum and Post-Quantum Security in Future Networks
    Sanon, Sogo Pierre
    Alzalam, Ihab
    Schotten, Hans D.
    2023 IEEE FUTURE NETWORKS WORLD FORUM, FNWF, 2024,
  • [8] Post-Quantum Security: Opportunities and Challenges
    Li, Silong
    Chen, Yuxiang
    Chen, Lin
    Liao, Jing
    Kuang, Chanchan
    Li, Kuanching
    Liang, Wei
    Xiong, Naixue
    SENSORS, 2023, 23 (21)
  • [9] Post-quantum Security of the Sponge Construction
    Czajkowski, Jan
    Bruinderink, Leon Groot
    Hulsing, Andreas
    Schaffner, Christian
    Unruh, Dominique
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2018, 2018, 10786 : 185 - 204
  • [10] Post-Quantum Primitives in Information Security
    Aleksandrova, E. B.
    Shtyrkina, A. A.
    Iarmak, A. V.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2019, 22 (03): : 269 - 276