Mapping properties for operator-valued pseudodifferential operators on toroidal Besov spaces

被引:0
|
作者
B. Barraza Martínez
R. Denk
J. Hernández Monzón
M. Nendel
机构
[1] Universidad del Norte,Departamento de Matemáticas
[2] University of Konstanz,Fachbereich für Mathematik und Statistik
关键词
Pseudodifferential operators; Vector-valued Besov spaces; Convolution kernels; 35S05; 47D06; 35R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider pseudodifferential operators on the torus with operator-valued symbols and prove continuity properties on vector-valued toroidal Besov spaces, without assumptions on the underlying Banach spaces. The symbols are of limited smoothness with respect to x and satisfy a finite number of estimates on the discrete derivatives. The proof of the main result is based on a description of the operator as a convolution operator with a kernel representation which is related to the dyadic decomposition appearing in the definition of the Besov space.
引用
收藏
页码:523 / 538
页数:15
相关论文
共 50 条