Abnormal behavior detection using dominant sets

被引:0
|
作者
Manuel Alvar
Andrea Torsello
Alvaro Sanchez-Miralles
José María Armingol
机构
[1] Comillas Pontifical University,ICAI School of Engineering, Institute for Research in Technology
[2] Università Ca’ Foscari di Venezia,Dipartimento di Informatica
[3] University Carlos III of Madrid,Intelligent Systems Lab
来源
关键词
Dominant sets; Abnormal behavior; Behavior analysis; Computer vision ;
D O I
暂无
中图分类号
学科分类号
摘要
Smart surveillance systems are increasingly being used to detect potentially dangerous situations. To do so, the common and easier way is to model normal human behaviors and consider as abnormal any new strange behavior in the scene. In this article, Dominant Sets is adapted to model most frequent behaviors and to detect any unknown event to trigger an alarm. It is proved that after an unsupervised training, Dominant Sets can robustly detect abnormal behaviors. The method is tested in several different cases and compared to other usual clusterization methods such as KNN, mixture of Gaussians or Fuzzy K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-Means to confirm its robustness and performance. The overall performance of abnormal behavior detection based on Dominant Sets is better, being the error ratio at least 1.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5$$\end{document} points lower than the others.
引用
收藏
页码:1351 / 1368
页数:17
相关论文
共 50 条
  • [1] Abnormal behavior detection using dominant sets
    Alvar, Manuel
    Torsello, Andrea
    Sanchez-Miralles, Alvaro
    Maria Armingol, Jose
    MACHINE VISION AND APPLICATIONS, 2014, 25 (05) : 1351 - 1368
  • [2] VIDEO SCENE DETECTION USING DOMINANT SETS
    Sakarya, Ufuk
    Telatar, Ziya
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 73 - 76
  • [3] Simultaneous Clustering and Outlier Detection using Dominant sets
    Zemene, Eyasu
    Tesfaye, Yonatan Tariku
    Prati, Andrea
    Pelillo, Marcello
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2325 - 2330
  • [4] Using Higher Dimensionalities to Identify Abnormal Behavior in Noisy Data Sets
    Olsen, David Allen
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4946 - 4952
  • [5] Abnormal behavior detection in videos using deep learning
    Jun Wang
    Limin Xia
    Cluster Computing, 2019, 22 : 9229 - 9239
  • [6] Abnormal behavior detection in videos using deep learning
    Wang, Jun
    Xia, Limin
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S9229 - S9239
  • [7] Abnormal behavior detection using privacy protected videos
    Iwashita, Yumi
    Takaki, Shuhei
    Morooka, Ken'ichi
    Tsuji, Tokuo
    Kurazume, Ryo
    2013 FOURTH INTERNATIONAL CONFERENCE ON EMERGING SECURITY TECHNOLOGIES (EST), 2013, : 55 - 57
  • [8] Abnormal behavior detection using streak flow acceleration
    Jun Jiang
    XinYue Wang
    Mingliang Gao
    Jinfeng Pan
    Chengyuan Zhao
    Jia Wang
    Applied Intelligence, 2022, 52 : 10632 - 10649
  • [9] Abnormal crowd behavior detection by using the particle entropy
    Gu, Xuxin
    Cui, Jinrong
    Zhu, Qi
    OPTIK, 2014, 125 (14): : 3428 - 3433
  • [10] Abnormal behavior detection using streak flow acceleration
    Jiang, Jun
    Wang, XinYue
    Gao, Mingliang
    Pan, Jinfeng
    Zhao, Chengyuan
    Wang, Jia
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10632 - 10649