Non-singular Solutions of Normalized Ricci Flow on Noncompact Manifolds of Finite Volume

被引:0
|
作者
Fuquan Fang
Zhenlei Zhang
Yuguang Zhang
机构
[1] Capital Normal University,Department of Mathematics
来源
关键词
Normalized Ricci flow; Convergence; Euler characteristic number; 53C44; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
The main result of this paper shows that if g(t) is a complete non-singular solution of the normalized Ricci flow on a noncompact 4-manifold M of finite volume, then the Euler characteristic number χ(M)≥0. Moreover, if χ(M)≠0, there exists a sequence of times tk→∞, a double sequence of points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{p_{k,l}\}_{l=1}^{N}$\end{document} and domains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{U_{k,l}\}_{l=1}^{N}$\end{document} with pk,l∈Uk,l satisfying the following: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{dist}_{g(t_{k})}(p_{k,l_{1}},p_{k,l_{2}})\rightarrow\infty$\end{document} as k→∞, for any fixed l1≠l2;for each l, (Uk,l,g(tk),pk,l) converges in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{\mathrm{loc}}^{\infty}$\end{document} sense to a complete negative Einstein manifold (M∞,l,g∞,l,p∞,l) when k→∞;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {Vol}_{g(t_{k})}(M\backslash\bigcup_{l=1}^{N}U_{k,l})\rightarrow0$\end{document} as k→∞.
引用
收藏
页码:592 / 608
页数:16
相关论文
共 50 条