The main result of this paper shows that if g(t) is a complete non-singular solution of the normalized Ricci flow on a noncompact 4-manifold M of finite volume, then the Euler characteristic number χ(M)≥0. Moreover, if χ(M)≠0, there exists a sequence of times tk→∞, a double sequence of points \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\{p_{k,l}\}_{l=1}^{N}$\end{document} and domains \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\{U_{k,l}\}_{l=1}^{N}$\end{document} with pk,l∈Uk,l satisfying the following: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathrm{dist}_{g(t_{k})}(p_{k,l_{1}},p_{k,l_{2}})\rightarrow\infty$\end{document} as k→∞, for any fixed l1≠l2;for each l, (Uk,l,g(tk),pk,l) converges in the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$C_{\mathrm{loc}}^{\infty}$\end{document} sense to a complete negative Einstein manifold (M∞,l,g∞,l,p∞,l) when k→∞;\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\operatorname {Vol}_{g(t_{k})}(M\backslash\bigcup_{l=1}^{N}U_{k,l})\rightarrow0$\end{document} as k→∞.