Quantum non-demolition measurement of a many-body Hamiltonian

被引:0
|
作者
Dayou Yang
Andrey Grankin
Lukas M. Sieberer
Denis V. Vasilyev
Peter Zoller
机构
[1] University of Innsbruck,Center for Quantum Physics
[2] Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In an ideal quantum measurement, the wave function of a quantum system collapses to an eigenstate of the measured observable, and the corresponding eigenvalue determines the measurement outcome. If the observable commutes with the system Hamiltonian, repeated measurements yield the same result and thus minimally disturb the system. Seminal quantum optics experiments have achieved such quantum non-demolition (QND) measurements of systems with few degrees of freedom. In contrast, here we describe how the QND measurement of a complex many-body observable, the Hamiltonian of an interacting many-body system, can be implemented in a trapped-ion analog quantum simulator. Through a single-shot measurement, the many-body system is prepared in a narrow band of (highly excited) energy eigenstates, and potentially even a single eigenstate. Our QND scheme, which can be carried over to other platforms of quantum simulation, provides a framework to investigate experimentally fundamental aspects of equilibrium and non-equilibrium statistical physics including the eigenstate thermalization hypothesis and quantum fluctuation relations.
引用
收藏
相关论文
共 50 条
  • [1] Quantum non-demolition measurement of a many-body Hamiltonian
    Yang, Dayou
    Grankin, Andrey
    Sieberer, Lukas M.
    Vasilyev, Denis V.
    Zoller, Peter
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Author Correction: Quantum non-demolition measurement of a many-body Hamiltonian
    Dayou Yang
    Andrey Grankin
    Lukas M. Sieberer
    Denis V. Vasilyev
    Peter Zoller
    Nature Communications, 12
  • [3] Quantum non-demolition measurement of a many-body Hamiltonian (vol 11, 775, 2020)
    Yang, Dayou
    Grankin, Andrey
    Sieberer, Lukas M.
    Vasilyev, Denis V.
    Zoller, Peter
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [4] Quantum non-demolition measurement of a superconducting qubit
    Lupascu, A.
    Saito, S.
    Picot, T.
    de Groot, P. C.
    Harmans, C. J. P. M.
    Mooij, J. E.
    SOLID-STATE QUANTUM COMPUTING, PROCEEDINGS, 2008, 1074 : 26 - +
  • [5] Certified quantum non-demolition measurement of atomic spins
    Sewell, R. J.
    Napolitano, M.
    Behbood, N.
    Colangelo, G.
    Martin Ciurana, F.
    Mitchell, M. W.
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [6] Quantum non-demolition measurement of an electron spin qubit
    Nakajima, Takashi
    Noiri, Akito
    Yoneda, Jun
    Delbecq, Matthieu R.
    Stano, Peter
    Otsuka, Tomohiro
    Takeda, Kenta
    Amaha, Shinichi
    Allison, Giles
    Kawasaki, Kento
    Ludwig, Arne
    Wieck, Andreas D.
    Loss, Daniel
    Tarucha, Seigo
    NATURE NANOTECHNOLOGY, 2019, 14 (06) : 555 - +
  • [7] Adaptive Quantum Non-Demolition Measurement of Fock States
    Peaudecerf, B.
    Rybarczyk, T.
    Gerlich, S.
    Dotsenko, I.
    Gleyzes, S.
    Brune, M.
    Raimond, J. -M.
    Haroche, S.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [8] Quantum non-demolition measurement of an electron spin qubit
    Takashi Nakajima
    Akito Noiri
    Jun Yoneda
    Matthieu R. Delbecq
    Peter Stano
    Tomohiro Otsuka
    Kenta Takeda
    Shinichi Amaha
    Giles Allison
    Kento Kawasaki
    Arne Ludwig
    Andreas D. Wieck
    Daniel Loss
    Seigo Tarucha
    Nature Nanotechnology, 2019, 14 : 555 - 560
  • [9] Certified quantum non-demolition measurement of material systems
    Mitchell, M. W.
    Koschorreck, M.
    Kubasik, M.
    Napolitano, M.
    Sewell, R. J.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [10] QUANTUM NON-DEMOLITION MEASUREMENT OF A SUPERCONDUCTING FLUX QUBIT
    Mooij, J. E.
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 221 - 225