Nonseparable Space-Time Covariance Models: Some Parametric Families

被引:0
|
作者
S. De Iaco
D. E. Myers
D. Posa
机构
[1] Facoltà di Economia,“G d'Annunzio,”
[2] University of Arizona,Department of Mathematics
[3] Dipartimento di Scienze Economiche e Matematico-Statistiche,undefined
[4] IRMA-CNR,undefined
来源
Mathematical Geology | 2002年 / 34卷
关键词
product–sum models; integrated models; separability; admissibility;
D O I
暂无
中图分类号
学科分类号
摘要
By extending the product and product–sum space-time covariance models, new families are generated as integrated products and product–sums. These include nonintegrable space-time covariance models not obtainable by the Cressie–Huang representation. It is shown how to fit the spatial and temporal components of the models as well as the probability density function. The methods are illustrated by a case study.
引用
收藏
页码:23 / 42
页数:19
相关论文
共 50 条
  • [1] Nonseparable space-time covariance models: Some parametric families
    De Iaco, S
    Myers, DE
    Posa, D
    MATHEMATICAL GEOLOGY, 2002, 34 (01): : 23 - 42
  • [2] A general class of nonseparable space-time covariance models
    Fonseca, Thais C. O.
    Steel, Mark F. J.
    ENVIRONMETRICS, 2011, 22 (02) : 224 - 242
  • [3] Nonseparable, stationary covariance functions for space-time data
    Gneiting, T
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) : 590 - 600
  • [4] Stationary nonseparable space-time covariance functions on networks
    Porcu, Emilio
    White, Philip A.
    Genton, Marc G.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 85 (05) : 1417 - 1440
  • [5] Nonseparable stationary anisotropic space-time covariance functions
    Porcu, E.
    Gregori, P.
    Mateu, J.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2006, 21 (02) : 113 - 122
  • [6] NONSEPARABLE, SPACE-TIME COVARIANCE FUNCTIONS WITH DYNAMICAL COMPACT SUPPORTS
    Porcu, Emilio
    Bevilacqua, Moreno
    Genton, Marc G.
    STATISTICA SINICA, 2020, 30 (02) : 719 - 739
  • [7] Fully nonseparable Gneiting covariance functions for multivariate space-time data
    Allard, Denis
    Clarotto, Lucia
    Emery, Xavier
    SPATIAL STATISTICS, 2022, 52
  • [8] Space-time covariance models on networks
    Tang, Jun
    Zimmerman, Dale
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 490 - 514
  • [9] Space-Time Covariance Structures and Models
    Chen, Wanfang
    Genton, Marc G.
    Sun, Ying
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 8, 2021, 2021, 8 : 191 - 215
  • [10] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Denis Allard
    Xavier Emery
    Céline Lacaux
    Christian Lantuéjoul
    Statistics and Computing, 2020, 30 : 1479 - 1495