Moore–Penrose Inverse of the Signless Laplacians of Bipartite Graphs

被引:0
|
作者
Abdullah Alazemi
Osama Alhalabi
Milica Anđelić
机构
[1] Kuwait University,Department of Mathematics
[2] Kuwait University,College of Graduate Studies
关键词
Moore–Penrose inverse; Incidence matrix; Signless Laplacian matrix; Laplacian matrix; 05C50; 15A09;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a relation between the Moore–Penrose inverse of the Laplacian and signless Laplacian matrices of a bipartite graph. As a consequence, we obtain combinatorial formulae for the Moore–Penrose inverse of signless Laplacians of bipartite graphs. We also provide a combinatorial formula for the Moore–Penrose inverse of an incidence matrix of any graph. In this way, we answer some of open problems raised in Hessert and Mallik (Discrete Math 344:112451, 2021).
引用
收藏
相关论文
共 50 条
  • [1] Moore-Penrose Inverse of the Signless Laplacians of Bipartite Graphs
    Alazemi, Abdullah
    Alhalabi, Osama
    Andelic, Milica
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (04)
  • [2] Signless Laplacians of finite graphs
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 155 - 171
  • [3] The Moore-Penrose inverse of matrices with an acyclic bipartite graph
    Britz, T
    Olesky, DD
    van den Driessche, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 390 : 47 - 60
  • [4] Moore-Penrose inverses of the signless Laplacian and edge-Laplacian of graphs
    Hessert, Ryan
    Mallik, Sudipta
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [5] Some results on the signless Laplacians of graphs
    Wang, Jianfeng
    Huang, Qiongxiang
    An, Xinhui
    Belardo, Francesco
    APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1045 - 1049
  • [6] A note on Moore-Penrose inverse of Laplacian matrix of graphs
    Nunez, Luis Carlos Picon
    Candezano, M. A. C.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (06)
  • [7] LAPLACIANS ON BIPARTITE METRIC GRAPHS
    Kurasov, Pavel
    Rohleder, Jonathan
    OPERATORS AND MATRICES, 2020, 14 (03): : 535 - 553
  • [8] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Cui, Chong
    Wang, Hongxing
    Wei, Yimin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4163 - 4186
  • [9] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Chong Cui
    Hongxing Wang
    Yimin Wei
    Journal of Applied Mathematics and Computing, 2023, 69 : 4163 - 4186
  • [10] On the inverse and Moore–Penrose inverse of resistance matrix of graphs with more general matrix weights
    Priti Prasanna Mondal
    Ravindra B. Bapat
    Fouzul Atik
    Journal of Applied Mathematics and Computing, 2023, 69 : 4805 - 4820