Poisson vertex algebras in the theory of Hamiltonian equations

被引:0
|
作者
Aliaa Barakat
Alberto De Sole
Victor G. Kac
机构
[1] MIT,Department of Mathematics
[2] Università di Roma “La Sapienza” Città Universitaria,Dipartimento di Matematica
来源
关键词
evolution equation; evolutionary vector field; local functional; integral of motion; integrable hierarchy; normal algebra of differential functions; Lie conformal algebra; Poisson vertex algebra; compatible λ -brackets; Lenard scheme; Beltrami λ -bracket; variational derivative; Fréchet derivative; variational complex; Dirac structure; compatible Dirac structures; 17B80;
D O I
暂无
中图分类号
学科分类号
摘要
We lay down the foundations of the theory of Poisson vertex algebras aimed at its applications to integrability of Hamiltonian partial differential equations. Such an equation is called integrable if it can be included in an infinite hierarchy of compatible Hamiltonian equations, which admit an infinite sequence of linearly independent integrals of motion in involution. The construction of a hierarchy and its integrals of motion is achieved by making use of the so called Lenard scheme. We find simple conditions which guarantee that the scheme produces an infinite sequence of closed 1-forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega_j, j \in {\mathbb {Z}}_+$$\end{document}, of the variational complex Ω. If these forms are exact, i.e., ωj are variational derivatives of some local functionals ∫ hj, then the latter are integrals of motion in involution of the hierarchy formed by the corresponding Hamiltonian vector fields. We show that the complex Ω is exact, provided that the algebra of functions is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript {V}$$\end{document} is “normal”; in particular, for arbitrary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript {V}$$\end{document}, any closed form in Ω becomes exact if we add to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript {V}$$\end{document} a finite number of antiderivatives. We demonstrate on the examples of the KdV, HD and CNW hierarchies how the Lenard scheme works. We also discover a new integrable hierarchy, which we call the CNW hierarchy of HD type. Developing the ideas of Dorfman, we extend the Lenard scheme to arbitrary Dirac structures, and demonstrate its applicability on the examples of the NLS, pKdV and KN hierarchies.
引用
收藏
页码:141 / 252
页数:111
相关论文
共 50 条
  • [1] Poisson vertex algebras in the theory of Hamiltonian equations
    Barakat, Aliaa
    De Sole, Alberto
    Kac, Victor G.
    JAPANESE JOURNAL OF MATHEMATICS, 2009, 4 (02): : 141 - 252
  • [2] Double Poisson vertex algebras and non-commutative Hamiltonian equations
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    ADVANCES IN MATHEMATICS, 2015, 281 : 1025 - 1099
  • [3] Vertex algebras and vertex poisson algebras
    Li, HS
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (01) : 61 - 110
  • [4] Classical W-Algebras and Generalized Drinfeld-Sokolov Bi-Hamiltonian Systems Within the Theory of Poisson Vertex Algebras
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (02) : 663 - 711
  • [5] On classification of poisson vertex algebras
    Alberto De Sole
    Victor G. Kac
    Minoru Wakimoto
    Transformation Groups, 2010, 15 : 883 - 907
  • [6] On classification of poisson vertex algebras
    De Sole, Alberto
    Kac, Victor G.
    Wakimoto, Minoru
    TRANSFORMATION GROUPS, 2010, 15 (04) : 883 - 907
  • [7] Logarithmic Vertex Algebras and Non-local Poisson Vertex Algebras
    Bakalov, Bojko
    Villarreal, Juan J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 404 (01) : 185 - 226
  • [8] Logarithmic Vertex Algebras and Non-local Poisson Vertex Algebras
    Bojko Bakalov
    Juan J. Villarreal
    Communications in Mathematical Physics, 2023, 404 (1) : 185 - 226
  • [9] Double Multiplicative Poisson Vertex Algebras
    Fairon, Maxime
    Valeri, Daniele
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (17) : 14991 - 15072
  • [10] Dirac Reduction for Poisson Vertex Algebras
    Alberto De Sole
    Victor G. Kac
    Daniele Valeri
    Communications in Mathematical Physics, 2014, 331 : 1155 - 1190