Weighted entropy and optimal portfolios for risk-averse Kelly investments

被引:0
|
作者
M. Kelbert
I. Stuhl
Y. Suhov
机构
[1] Moscow Higher School of Economics,Mathematics Department
[2] University of Denver,IMS
[3] University of Sao Paulo,Mathematics Department
[4] University of Debrecen,DPMMS
[5] Penn State University,undefined
[6] University of Cambridge,undefined
[7] IPIT RAS,undefined
来源
Aequationes mathematicae | 2018年 / 92卷
关键词
Weight function; Return function; Predictable strategy; Expected weighted interest rate; Supermartingale; Martingale; Log-optimal investment portfolio; Primary 60A10; 60B05; 60C05; Secondary 91G80; 91G99;
D O I
暂无
中图分类号
学科分类号
摘要
Following a series of works on capital growth investment, we analyse log-optimal portfolios where the return evaluation includes ‘weights’ of different outcomes. The results are twofold: (A) under certain conditions, the logarithmic growth rate leads to a supermartingale, and (B) the optimal (martingale) investment strategy is a proportional betting. We focus on properties of the optimal portfolios and discuss a number of simple examples extending the well-known Kelly betting scheme. An important restriction is that the investment does not exceed the current capital value and allows the trader to cover the worst possible losses. The paper deals with a class of discrete-time models. A continuous-time extension is a topic of an ongoing study.
引用
收藏
页码:165 / 200
页数:35
相关论文
共 50 条
  • [1] Weighted entropy and optimal portfolios for risk-averse Kelly investments
    Kelbert, M.
    Stuhl, I.
    Suhov, Y.
    AEQUATIONES MATHEMATICAE, 2018, 92 (01) : 165 - 200
  • [2] Hedge funds in portfolios of risk-averse investors
    Hood M.
    Nofsinger J.R.
    Journal of Economics and Finance, 2007, 31 (2) : 219 - 233
  • [3] Optimal Screening by Risk-Averse Principals
    Basov, Suren
    Yin, Xiangkang
    B E JOURNAL OF THEORETICAL ECONOMICS, 2010, 10 (01):
  • [4] On risk-averse maximum weighted subgraph problems
    Maciej Rysz
    Mohammad Mirghorbani
    Pavlo Krokhmal
    Eduardo L. Pasiliao
    Journal of Combinatorial Optimization, 2014, 28 : 167 - 185
  • [5] On risk-averse maximum weighted subgraph problems
    Rysz, Maciej
    Mirghorbani, Mohammad
    Krokhmal, Pavlo
    Pasiliao, Eduardo L.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (01) : 167 - 185
  • [6] An Optimal Path Model for the Risk-Averse Traveler
    Zhang, Leilei
    Homem-de-Mello, Tito
    TRANSPORTATION SCIENCE, 2017, 51 (02) : 518 - 535
  • [7] Risk-averse risk-constrained optimal control
    Sopasakis, Pantelis
    Schuurmans, Mathijs
    Patrinos, Panagiotis
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 375 - 380
  • [8] On Risk-Averse Weighted k-Club Problems
    Rysz, Maciej
    Mahdavi Pajouh, Foad
    Krokhmal, Pavlo
    Pasiliao, Eduardo
    EXAMINING ROBUSTNESS AND VULNERABILITY OF NETWORKED SYSTEMS, 2014, 37 : 231 - 242
  • [9] Should risk-averse investors target the portfolios of socially responsible companies?
    Valls Martinez, Maria del Carmen
    Soriano Roman, Rafael
    Martin Cervantes, Pedro Antonio
    OECONOMIA COPERNICANA, 2022, 13 (02) : 439 - 474
  • [10] OPTIMAL METHODS FOR CONVEX RISK-AVERSE DISTRIBUTED OPTIMIZATION
    Lan, Guanghui
    Zhang, Zhe
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (03) : 1518 - 1557