Classical global solutions for a class of Hamilton-Jacobi equations

被引:0
|
作者
Cruz-Sampedro J. [1 ]
机构
[1] Departamento de Ciencias Básicas, UAM-A, Col Reynosa Tamaulipas, Mexico, D.F. 02200
关键词
Eikonal equation; Global solution; Hamilton-Jacobi equation;
D O I
10.1007/s12346-010-0017-6
中图分类号
学科分类号
摘要
Let V be a real-valued function of class C2 on ℝn, n ≥ 2, which vanishes if {pipe}x{pipe} ≤ R and, for some ∈ > 0, satisfies ∂αx V(x) = O({pipe}x{pipe}-∈-{pipe}α{pipe}), as {pipe}x{pipe} → ∞, for {pipe}α{pipe} ≤ 2. Using a global inverse function theorem of Hadamard, we showthat if R is sufficiently large, then the Hamilton-Jacobi equation of eikonal type {pipe}∇u{pipe}2+V(x) = k2, with k > 0, has a C1 solution on ℝn \ {0}. © Birkhäuser/Springer Basel AG 2010.
引用
收藏
页码:267 / 277
页数:10
相关论文
共 50 条
  • [1] Almost classical solutions of Hamilton-Jacobi equations
    Deville, Robert
    Jaramillo, Jesus A.
    REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (03) : 989 - 1010
  • [2] Global solutions of inhomogeneous Hamilton-Jacobi equations
    Souplet, Philippe
    Zhang, Qi S.
    JOURNAL D ANALYSE MATHEMATIQUE, 2006, 99 (1): : 355 - 396
  • [3] On global discontinuous solutions of Hamilton-Jacobi equations
    Chen, GQ
    Su, B
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (02) : 113 - 118
  • [4] Global solutions of inhomogeneous Hamilton-Jacobi equations
    Philippe Souplet
    Qi S. Zhang
    Journal d’Analyse Mathématique, 2006, 99 : 355 - 396
  • [5] Regularity Results for Solutions of a Class of Hamilton-Jacobi Equations
    Piermarco Cannarsa
    Andrea Mennucci
    Carlo Sinestrari
    Archive for Rational Mechanics and Analysis, 1997, 140 : 197 - 223
  • [6] Regularity results for solutions of a class of Hamilton-Jacobi equations
    Cannarsa, P
    Mennucci, A
    Sinestrari, C
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) : 197 - 223
  • [7] GLOBAL-SOLUTIONS FOR A CLASS OF HAMILTON-JACOBI EQUATIONS IN HILBERT-SPACES
    DIBLASIO, G
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1985, 8 (3-4) : 261 - 300
  • [8] Global propagation of singularities for solutions of Hamilton-Jacobi equations
    Albano, Paolo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 1462 - 1478
  • [9] Global subanalytic solutions of Hamilton-Jacobi type equations
    Trélat, E
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (03): : 363 - 387
  • [10] On global solutions of the random hamilton-jacobi equations and the KPZ problem
    Bakhtin, Yuri
    Khanin, Konstantin
    arXiv, 2017,