Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction

被引:0
|
作者
DHANRAJ B SHINDE
VISHAL M VISHAL
SREEKUMAR KURUNGOT
VIJAYAMOHANAN K PILLAI
机构
[1] National Chemical Laboratory,Physical and Materials Chemistry Division
[2] Central Electrochemical Research Institute (CECRI),undefined
来源
关键词
N-GQDs; MWCNTs; fuel cells; unzipping; oxygen reduction reaction.;
D O I
暂无
中图分类号
学科分类号
摘要
Here we report a remarkable transformation of nitrogen-doped multiwalled carbon nanotubes (MWCNTs) to size selective nitrogen-doped graphene quantum dots (N-GQDs) by a two-step electrochemical method. The sizes of the N-GQDs strongly depend on the applied anodic potential, moreover increasing potential resulted in a smaller size of N-GQDs. These N-GQDs display many unusual size-dependant optoelectronic (blue emission) and electrocatalytic (oxygen reduction) properties. The presence of N dopants in the carbon framework not only causes faster unzipping of MWCNTs but also provides more low activation energy site for enhancing the electrocatalytic activity for technologically daunting reactions like oxygen reduction. The smaller size of N-GQDs has shown better performance as compared to the large N-GQDs. Interestingly, N-GQDs-3 (size = 2.5±0.3 nm, onset potential = 0.75 V) show a 30-mV higher positive onset potential shift compared to that of N-GQDs-2 (size = 4.7±0.3 nm, onset potential = 0.72 V) and 70 mV than that of N-GQDs-1 (size = 7.2±0.3, onset potential = 0.68 V) for oxygen reduction reaction (ORR) in a liquid phase. These result in the size-dependent electrocatalytic activity of N-GQDs for ORR as illustrated by the smaller sized N-GQDs (2.5±0.3 nm) undoubtedly promising metal-free electrocatalysts for fuel cell applications.
引用
收藏
页码:435 / 442
页数:7
相关论文
共 50 条
  • [1] Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction
    Shinde, Dhanraj B.
    Dhavale, Vishal M.
    Kurungot, Sreekumar
    Pillai, Vijayamohanan K.
    BULLETIN OF MATERIALS SCIENCE, 2015, 38 (02) : 435 - 442
  • [2] Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction
    Li, Qiqi
    Zhang, Sheng
    Dai, Liming
    Li, Liang-shi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (46) : 18932 - 18935
  • [3] Size effect of oxygen reduction reaction on nitrogen-doped graphene quantum dots
    Zhang, Peng
    Hu, Qiang
    Yang, Xuejing
    Hou, Xiuli
    Mi, Jianli
    Liu, Lei
    Dong, Mingdong
    RSC ADVANCES, 2018, 8 (01) : 531 - 536
  • [4] Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction
    Peng San
    Guo Hui-Lin
    Kang Xiao-Feng
    ACTA PHYSICO-CHIMICA SINICA, 2014, 30 (09) : 1778 - 1786
  • [5] Platinum nanoparticles encapsulated in nitrogen-doped graphene quantum dots: Enhanced electrocatalytic reduction of oxygen by nitrogen dopants
    Chen, Limei
    Peng, Yi
    Lu, Jia-En
    Wang, Nan
    Hu, Peiguang
    Lu, Bingzhang
    Chen, Shaowei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (49) : 29192 - 29200
  • [6] Computational study of the oxygen reduction reaction on nitrogen-doped graphene quantum dots
    Noffke, Benjamin W.
    Li, Liang-shi
    Raghavachari, Krishnan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [7] The Oxygen Reduction Activity of Nitrogen-doped Graphene
    Liu Jian-feng
    Sun Ge
    Wang Ting
    Ning Kai
    Yuan Bin-xia
    Pan Wei-guo
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2022, 24 (03) : 29 - 34
  • [8] Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media
    Vikkisk, Merilin
    Kruusenberg, Ivar
    Joost, Urmas
    Shulga, Eugene
    Kink, Ilmar
    Tammeveski, Kaido
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 : 369 - 376
  • [9] Enhanced electrocatalytic activity of nitrogen-doped olympicene/graphene hybrids for the oxygen reduction reaction
    Hou, Xiuli
    Zhang, Peng
    Li, Shuang
    Liu, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (33) : 22799 - 22804
  • [10] Configuration Sensitivity of Electrocatalytic Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Zhang, Yifan
    Fu, Hongquan
    He, Changchun
    Zhang, Hai
    Li, Yuhang
    Yang, Guangxing
    Cao, Yonghai
    Wang, Hongjuan
    Peng, Feng
    Yang, Xiaobao
    Yu, Hao
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (26): : 6187 - 6193