Morse theory for a fourth order elliptic equation with exponential nonlinearity

被引:0
|
作者
Laura Abatangelo
Alessandro Portaluri
机构
[1] University of Milano-Bicocca,
[2] University of Salento,undefined
关键词
35B33; 53A30; 53C21; 58E05; Scalar field equations; Geometric PDE’s; Morse Theory; Leray-Schauder degree;
D O I
暂无
中图分类号
学科分类号
摘要
Given a Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal H,\langle\cdot,\cdot\rangle)}$$\end{document}, and interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Lambda\subset(0,+\infty)}$$\end{document} and a map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K\in C^2(\mathcal H,\mathbb R)}$$\end{document} whose gradient is a compact mapping, we consider the family of functionals of the type: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(\lambda,u)=\dfrac12\langle u,u\rangle-\lambda K(u),\quad (\lambda,u)\in\Lambda\times\mathcal H.$$\end{document}As already observed by many authors, for the functionals we are dealing with the (PS) condition may fail under just this assumptions. Nevertheless, by using a recent deformation Lemma proven by Lucia (Topol Methods Nonlinear Anal 30(1):113–138, 2007), we prove a Poincaré–Hopf type theorem. Moreover by using this result, together with some quantitative results about the formal set of barycenters, we are able to establish a direct and geometrically clear degree counting formula for a fourth order nonlinear scalar field equation on a bounded and smooth C∞ region of the four dimensional Euclidean space in the flavor of (Malchiodi in Adv Differ Equ 13:1109–1129, 2008). We remark that this formula has been proven with complete different methods in (Lin and Wei Preprint, 2007) by using blow-up type estimates.
引用
收藏
页码:27 / 43
页数:16
相关论文
共 50 条