Gradient higher integrability for singular parabolic double-phase systems

被引:0
|
作者
Wontae Kim
Lauri Särkiö
机构
[1] Aalto University,Department of Mathematics
关键词
Parabolic double-phase systems; Parabolic ; -Laplace systems; Gradient estimates; 35D30; 35K55; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a local higher integrability result for the gradient of a weak solution to parabolic double-phase systems of p-Laplace type when 2nn+2<p≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{2n}{n+2}< p\le 2$$\end{document}. The result is based on a reverse Hölder inequality in intrinsic cylinders combining p-intrinsic and (p, q)-intrinsic geometries. A singular scaling deficits affects the range of q.
引用
收藏
相关论文
共 50 条
  • [1] Gradient higher integrability for singular parabolic double-phase systems
    Kim, Wontae
    Sarkio, Lauri
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (03):
  • [2] Gradient Higher Integrability for Degenerate Parabolic Double-Phase Systems
    Kim, Wontae
    Kinnunen, Juha
    Moring, Kristian
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (05)
  • [3] Gradient Higher Integrability for Degenerate Parabolic Double-Phase Systems
    Wontae Kim
    Juha Kinnunen
    Kristian Moring
    Archive for Rational Mechanics and Analysis, 2023, 247
  • [4] Gradient Higher Integrability for Degenerate/Singular Parabolic Multi-phase ProblemsGradient Higher Integrability for Degenerate/Singular Parabolic...A. Sen
    Abhrojyoti Sen
    The Journal of Geometric Analysis, 2025, 35 (6):
  • [5] Higher fractional differentiability for solutions to parabolic equations with double-phase growth
    Zhao, Lijing
    Zheng, Shenzhou
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 84
  • [6] Lipschitz truncation method for parabolic double-phase systems and applications
    Kim, Wontae
    Kinnunen, Juha
    Sarkio, Lauri
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (03)
  • [7] GRADIENT HIGHER INTEGRABILITY FOR DOUBLE PHASE PROBLEMS ON METRIC MEASURE SPACES
    Kinnunen, Juha
    Nastasi, Antonella
    Camacho, Cintia Pacchiano
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (03) : 1233 - 1251
  • [8] Higher integrability for parabolic systems with Orlicz growth
    Hasto, Peter
    Ok, Jihoon
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 300 : 925 - 948
  • [9] Higher integrability for doubly nonlinear parabolic systems
    Boegelein, Verena
    Duzaar, Frank
    Kinnunen, Juha
    Scheven, Christoph
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 : 31 - 72
  • [10] Higher integrability for doubly nonlinear parabolic systems
    Boegelein, Verena
    Duzaar, Frank
    Scheven, Christoph
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (06):